Chronic exposure to lead and cadmium pollution results in genomic instability in a model biomonitor species (Apodemus flavicollis Melchior, 1834).

Ecotoxicol Environ Saf

Department of Zoology, Faculty of Biology, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria. Electronic address:

Published: May 2020

Polymetal dust is a common industrial pollutant. While the use of remediation filters and equipment in lead smelters has reduced pollutant emission, surrounding areas remain contaminated due to the long-term transfer of heavy metals along the food chain. Here we assess the mutagenic potential of the lead-zinc smelter near Plovdiv (Bulgaria) situated in an area that has been contaminated with heavy metals for 60 years. We aimed to evaluate the genomic response of the yellow-necked mouse (A. flavicollis), a biomonitor species, in three sampling sites along the pollution gradient. Mice from Strandzha Natural Park were used as a negative control. The bioaccumulation rate of two non-essential heavy metals, lead (Pb) and cadmium (Cd), in liver tissues was determined by atomic absorption spectroscopy. Genetic alterations attributable to chronic exposure to trace levels of heavy metals were assessed in different blood cell populations using two independent methods: a micronucleus test was applied to evaluate the clastogenic and aneugenic alterations in erythrocytes, while a comet assay was used to assess DNA instability, as evidenced by single- and double-stranded breaks and alkali-labile sites, in leucocytes. We observed elevated levels of Pb and Cd in livers derived from mice from the impacted area: the mean Pb concentration (21.38 ± 8.77 μg/g) was two-fold higher than the lowest-observed-adverse-effect levels (LOAELs), while the mean Cd concentration (13.95 ± 9.79 μg/g) was extremely close to these levels. The mean levels of Pb and Cd in livers derived from mice from the impacted area were 31-fold and 63-fold higher, respectively, than the levels measured in mice from the control area. The mean frequency of micronuclei was significantly higher (four-fold) than that observed in the control animals. Furthermore, parameters measured by the comet assay, % tail DNA, tail length and tail moment, were significantly higher in the impact area, indicating the degree of genetic instability caused by exposure to heavy metals. In conclusion, this study shows that despite the reported reduction in lead and cadmium emissions in Bulgaria in recent years, A. flavicollis individuals inhabiting areas subject to long-term contamination exhibit significant signs of DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110413DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
lead cadmium
12
chronic exposure
8
biomonitor species
8
comet assay
8
levels livers
8
livers derived
8
derived mice
8
mice impacted
8
impacted area
8

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!