Increasing use of continuous glucose monitoring (CGM) data has created an array of glucose metrics for glucose variability, temporal patterns, and times in ranges. However, a gold standard metric has not been defined. We assess the performance of multiple glucose metrics to determine their ability to detect intra- and interperson variability to determine a set of recommended metrics. The Juvenile Diabetes Research Foundation data set, a randomized controlled study of CGM and self-monitored blood glucose conducted in children and adults with type 1 diabetes (T1D), was used. To determine the ability of the evaluated glycemic metrics to discriminate between different subjects and attenuate the effect of within-subject variation, the discriminant ratio was calculated and compared for each metric. Then, the findings were confirmed using data from two other recent randomized clinical trials. Mean absolute glucose (MAG) has the highest discriminant ratio value (2.98 [95% confidence interval {CI} 1.64-3.67]). In addition, low blood glucose index and index of glycemic control performed well (1.93 [95% CI 1.15-3.44] and 1.92 [95% CI 1.27-2.93], respectively). For percentage times in glucose target ranges, the optimal discriminator was percentage time in glucose target 70-180 mg/dL. MAG is the optimal index to differentiate glucose variability in people with T1D, and may be a complementary therapeutic monitoring tool in addition to glycated hemoglobin and a measure of hypoglycemia. Percentage time in glucose target 70-180 mg/dL is the optimal percentage time in range to report.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591377 | PMC |
http://dx.doi.org/10.1089/dia.2019.0415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!