Retrospect and Prospect of Single Particle Cryo-Electron Microscopy: The Class of Integral Membrane Proteins as an Example.

J Chem Inf Model

Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.

Published: May 2020

A giant technological leap in the field of cryo-electron microscopy (cryo-EM) has assured the achievement of near-atomic resolution structures of biological macromolecules. As a recognition of this accomplishment, the Nobel Prize in Chemistry was awarded in 2017 to Jacques Dubochet, Joachim Frank, and Richard Henderson, the pioneers in the field of cryo-EM. Currently, the technique has become the method of choice for structural analysis of heterogeneous and intrinsically dynamic biological complexes. In the past few years, the most prolific branch of cryo-EM, single particle analysis, has revolutionized the structural biology field and structural investigation of membrane proteins, in particular. To achieve high-resolution structures of macromolecules in noncrystalline specimens, from sample and grid preparation to image acquisition, image data processing, and analysis of 3D maps, methodological advances in each of the steps play critical roles. In this Review, we discuss two areas in single particle cryo-EM, the remarkable developments in sample preparation strategies, particularly for membrane proteins, and breakthroughs in methodologies for molecular model building on the high-resolution 3D density maps that brought promises to resolve high-resolution (<4 Å) structures of biological macromolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.9b01015DOI Listing

Publication Analysis

Top Keywords

single particle
12
membrane proteins
12
cryo-electron microscopy
8
retrospect prospect
4
prospect single
4
particle cryo-electron
4
microscopy class
4
class integral
4
integral membrane
4
proteins example
4

Similar Publications

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.

View Article and Find Full Text PDF

Direct analysis of engineered iron nanotubes and platinum nanorods: A challenge for single particle inductively coupled plasma mass spectrometry.

Talanta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:

The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.

View Article and Find Full Text PDF

When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.

View Article and Find Full Text PDF

Coliphage N4 is a representative species of the family of bacteriophages. Originally structurally studied in 2008, the capsid structure was solved to 14 Å to reveal an interesting arrangement of Ig-like decoration proteins across the surface of the capsid. Herein, we present a high-resolution N4 structure, reporting a 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!