The production of paper-based bacterial cellulose-chitosan (BC-Ch) nanocomposites was accomplished following two different approaches. In the first, BC paper sheets were produced and then immersed in an aqueous solution of chitosan (BC-ChI); in the second, BC pulp was impregnated with chitosan prior to the production of paper sheets (BC-ChM). BC-Ch nanocomposites were investigated in terms of physical characteristics, antimicrobial and antioxidant properties, and the ability to inhibit the formation of biofilms on their surface. The two types of BC-Ch nanocomposites maintained the hydrophobic character, the air barrier properties, and the high crystallinity of the BC paper. However, BC-ChI showed a surface with a denser fiber network and with smaller pores than those of BC-ChM. Only 5% of the chitosan leached from the BC-Ch nanocomposites after 96 h of incubation in an aqueous medium, indicating that it was well retained by the BC paper matrix. BC-Ch nanocomposites displayed antimicrobial activity, inhibiting growth of and having a killing effect against bacteria and and yeast . Moreover, BC-Ch papers showed activity against the formation of a biofilm on their surface. The incorporation of chitosan increased the antioxidant activity of the BC paper. Paper-based BC-Ch nanocomposites combined the physical properties of BC paper and the antimicrobial, antibiofilm, and antioxidant activities of chitosan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.0c00127 | DOI Listing |
Curr Res Food Sci
September 2023
Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
In this study, a functional composite membrane was facilely fabricated by using a dual nanofibril system of bacterial cellulose (BC) and chitin (CH) nanofibrils as bio-based building blocks. The BC-CH membranes with enhanced antibacterial activity were constructed by incorporation of all-natural bioactive nanoparticles (GBTPs), which were formed by spontaneous molecular interactions of three naturally occurring active small molecules, i.e.
View Article and Find Full Text PDFBiomacromolecules
April 2020
Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
The production of paper-based bacterial cellulose-chitosan (BC-Ch) nanocomposites was accomplished following two different approaches. In the first, BC paper sheets were produced and then immersed in an aqueous solution of chitosan (BC-ChI); in the second, BC pulp was impregnated with chitosan prior to the production of paper sheets (BC-ChM). BC-Ch nanocomposites were investigated in terms of physical characteristics, antimicrobial and antioxidant properties, and the ability to inhibit the formation of biofilms on their surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!