Optical anticounterfeiting, typically using luminescent materials to encode and unveil hidden patterns, plays an essential role in countering fraud in trademark, document security, food industry, and public safety. However, this technique is often realized through color-encoded fashion and in the visible range, preventing high-order encryption as well as visualization through scattering layers. Here, we describe a set of shortwave infrared (SWIR)-emitting lanthanide-doped nanoparticles with precisely controlled luminescence lifetime, which can be utilized as temporary codes for multilevel anticounterfeiting through opaque layers. To achieve this, we devise a core/shell/shell/shell structure of NaYF:Yb/Er @ NaYbF @ NaYF @ NaYF:Nd, in which the inert NaYF shell acts as an energy-retarding layer to regulate energy flow from the outmost light-harvesting layer to the inner core domain to produce long-lived SWIR luminescence at 1532 nm. A precise control of the NaYF layer thickness enables yielding a precisely defined lifetime tunable between ∼3 and 10 ms, yet without compromising luminescence intensities. Importantly, optical patterns of these lifetime-encoded core/multishell nanoparticles are able to dynamically show a multitude of secured images in the time domain at defined time points through opaque plastic and biomimetic intralipid layers (about half a centimeter thick). Our temporal optical multiplexing results, demonstrated here in multilevel anticounterfeiting, have implications for optical data storage, biosensing, diagnostics, and nanomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b08326 | DOI Listing |
Chem Commun (Camb)
January 2025
Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India.
Technological advancements have intensified the demand for effective counterfeiting protection. This work presents multi-level security features in a (Ca,Zn)TiO:Pr,Er phosphor. A dual doping strategy synergistically results in dynamically changing luminescence emission.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Organic room-temperature phosphorescent (RTP) materials have wide-ranging applications in anticounterfeiting, biodiagnostics, and optoelectronic devices due to their unique properties. However, it remains a challenge to give organic RTP materials dynamic tunability to satisfy the demands of various advanced applications. Herein, we propose an effective strategy to precisely modulate phosphorescent performance by incorporating dynamic metal-ligand coordination within a host-guest doped system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.
View Article and Find Full Text PDFNano Lett
January 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin-orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@AlO) RTP composites.
View Article and Find Full Text PDFInorg Chem
December 2024
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
Metal-organic hybrid materials with long persistent luminescence (LPL) properties have attracted a lot of attention due to their enormous potential for applications in information encryption, anticounterfeiting, and other correlation fields. However, achieving multimodal luminescence in a single component remains a significant challenge. Herein, we report two two-dimensional LPL coordination polymers: {[Zn(BA)(BIMB)]·2HO} () and {[Cd(BA)(BIMB)]·3HO} () (BIMB = 1,3-bis(imidazol-1-yl)benzene; BA = butanedioic acid).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!