Enhancing switchable dielectric property for crystalline supramolecular rotor compounds by adding polar components.

Chem Commun (Camb)

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

Published: April 2020

Two new compounds were obtained by assembling the [(2-methoxy-5-nitro-anilinium)(18-crown-6)]+ cation with non-polar PF6- and polar SO3CF3- anions, respectively. Benefiting from its polar anion, the SO3CF3- compound reveals a more significant dielectric switching behaviour during phase transition, demonstrating an effective strategy to enhance the dielectric property by adding polar components.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc01026jDOI Listing

Publication Analysis

Top Keywords

dielectric property
8
adding polar
8
polar components
8
enhancing switchable
4
switchable dielectric
4
property crystalline
4
crystalline supramolecular
4
supramolecular rotor
4
rotor compounds
4
compounds adding
4

Similar Publications

Efficient Degradation of Ciprofloxacin in Water Using nZVI/g-CN Enhanced Dielectric Barrier Discharge Plasma Process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Overrated energy storage performances of dielectrics seriously affected by fringing effect and parasitic capacitance.

Nat Commun

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China.

Dielectric capacitors are vital for modern power and electronic systems, and accurate assessment of their dielectric properties is paramount. However, in many prevailing reports, the fringing effect near electrodes and parasitic capacitance in the test circuit were often neglected, leading to overrated dielectric performances. Here, the serious impacts of the fringing effect and parasitic capacitance are investigated both experimentally and theoretically on different dielectrics including AlO, SrTiO, etc.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!