A mechanically bendable and conformally attachable polymer membrane microlaser array enabled by digital interference lithography.

Nanoscale

School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

Published: March 2020

The progressive miniaturization and thinning of photonic devices would enable the realization of multi-functional photonic integrated circuits and expand the application frontier to novel fields including wearable and disposable electronics. Herein, we have demonstrated a mechanically bendable and conformally attachable polymer membrane microcavity laser array using digital interference lithography. The developed lithography system could distribute a number of subwavelength grating pixels with both high efficiency (1k pixels per second) and excellent versatility (ease of control in the pixel size, spacing, and grating periodicity) as the microcavity laser array, in which a pair of subwavelength gratings constitutes a distributed Bragg resonator microcavity via coherent interference, furnishes a vertically emitting microcavity laser array for convenient light coupling and utilization. The microlaser array polymer membrane presented a total thickness of only 30 μm with excellent performance stability and reliability against long time operation and harsh environmental conditions, which could be further reversibly stretched, repeatedly bendable and conformally attached onto rounded or irregular surfaces or biological tissues with no degradation in single-mode or low-threshold characteristics, paving a way for on-chip optical functionalization toward wearable electronics and outdoor environmental monitoring applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr10970fDOI Listing

Publication Analysis

Top Keywords

bendable conformally
12
polymer membrane
12
microcavity laser
12
laser array
12
mechanically bendable
8
conformally attachable
8
attachable polymer
8
microlaser array
8
digital interference
8
interference lithography
8

Similar Publications

As the trajectory of developing advanced electronics is shifting towards wearable electronics, various methods for implementing flexible and bendable devices capable of conforming to curvilinear surfaces have been widely investigated. In particular, achieving high-performance and stable flexible transistors remains a significant technical challenge, as transistors are fundamental components of electronics, playing a key role in overall performance. Among the wide range of candidates for flexible transistors, two-dimensional (2D) molybdenum disulfide (MoS)-based transistors have emerged as potential solutions to address these challenges.

View Article and Find Full Text PDF

Flexible Wearable Tri-notched UWB Antenna Printed with Silver Conductive Materials.

ACS Omega

September 2024

School of Electronic and Information Engineering, Liaoning Technical University, Huludao City 125105, China.

The advancement of Internet of Things and associated technologies has led to the widespread usage of smart wearable devices, greatly boosting the demand for flexible antennas, which are critical electromagnetic components in such devices. Additive manufacturing technologies provide a feasible solution for the creation of wearable and flexible antennas. However, performance reliability under deformation and radiation safety near the human body are two issues that need to be solved for such antennas.

View Article and Find Full Text PDF

Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface's dynamics. Among various materials that have been explored for flexible electronics, metal-organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications.

View Article and Find Full Text PDF

Stretchable and Skin-Conformal Thermoelectric Generator with Highly Flexible and Plastically Bendable Silver Selenide Films.

ACS Appl Mater Interfaces

August 2024

Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.

Among inorganic thermoelectric materials, flexible thermoelectric materials have attracted considerable attention. In this study, highly flexible and plastically bendable silver selenide films with excellent thermoelectric performance at room temperature are presented. The flexibility of the freestanding silver selenide films was significantly improved through a simple annealing treatment.

View Article and Find Full Text PDF

Significance: Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic conditions remains a significant challenge.

Aim: The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide a real-time probe three-dimensional (3D) shape estimation to improve the use of fNIRS in everyday conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!