A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular simulation of the shape deformation of a polymersome. | LitMetric

Molecular simulation of the shape deformation of a polymersome.

Soft Matter

Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York, 10314, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA and Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA.

Published: April 2020

Vesicles composed of diblock copolymers, or polymersomes, have proven to possess numerous applications ranging from drug delivery to catalytically driven nano-motors. The shape of a polymersome can be responsive to external stimuli, such as light or solvent. Molecular dynamics simulations reveal that the shape change upon the contraction of the inner volume of a polymersome vesicle occurs in two separate regimes-a stretching regime and a bending regime. The barrier is shown to be dependent on the solvent environment. These results suggest that tailoring the bending modulus of polymer membranes can be used as a design methodology to engineer new stimuli-responsive vesicles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm02165eDOI Listing

Publication Analysis

Top Keywords

molecular simulation
4
simulation shape
4
shape deformation
4
deformation polymersome
4
polymersome vesicles
4
vesicles composed
4
composed diblock
4
diblock copolymers
4
copolymers polymersomes
4
polymersomes proven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!