Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vesicles composed of diblock copolymers, or polymersomes, have proven to possess numerous applications ranging from drug delivery to catalytically driven nano-motors. The shape of a polymersome can be responsive to external stimuli, such as light or solvent. Molecular dynamics simulations reveal that the shape change upon the contraction of the inner volume of a polymersome vesicle occurs in two separate regimes-a stretching regime and a bending regime. The barrier is shown to be dependent on the solvent environment. These results suggest that tailoring the bending modulus of polymer membranes can be used as a design methodology to engineer new stimuli-responsive vesicles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm02165e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!