A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NanoPt-A Nanostructured Electrode Coating for Neural Recording and Microstimulation. | LitMetric

NanoPt-A Nanostructured Electrode Coating for Neural Recording and Microstimulation.

ACS Appl Mater Interfaces

Department of Microsystems Engineering (IMTEK)-ElectroActive Coatings Group, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.

Published: April 2020

Bioelectronic devices, interfacing neural tissue for therapeutic, diagnostic, or rehabilitation purposes, rely on small electrode contacts in order to achieve highly sophisticated communication at the neural interface. Reliable recording and safe stimulation with small electrodes, however, are limited when conventional electrode metallizations are used, demanding the development of new materials to enable future progress within bioelectronics. In this study, we present a versatile process for the realization of nanostructured platinum (nanoPt) coatings with a high electrochemically active surface area, showing promising biocompatibility and providing low impedance, high charge injection capacity, and outstanding long-term stability both for recording and stimulation. The proposed electrochemical fabrication process offers exceptional control over the nanoPt deposition, allowing the realization of specific coating morphologies such as small grains, pyramids, or nanoflakes, and can moreover be scaled up to wafer level or batch fabrication under economic process conditions. The suitability of nanoPt as a coating for neural interfaces is here demonstrated, in vitro and in vivo, revealing superior stimulation performance under chronic conditions. Thus, nanoPt offers promising qualities as an advanced neural interface coating which moreover extends to the numerous application fields where a large (electro)chemically active surface area contributes to increased efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b22798DOI Listing

Publication Analysis

Top Keywords

coating neural
8
neural interface
8
electrochemically active
8
active surface
8
surface area
8
neural
5
nanopt-a nanostructured
4
nanostructured electrode
4
coating
4
electrode coating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!