Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I, Rb2Mn3(VO4)2CO3, crystallizes in the trigonal crystal system in the space group P3[combining macron]1c, and compound II, K2Co3(VO4)2CO3, crystallizes in the hexagonal space group P63/m. Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO6 octahedra and MO5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c-axis through tetrahedral [VO4] groups. The MO5 units are connected with each other by carbonate groups in the ab-plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO6-honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO5 triangular lattice ordered below 2.3 K in a colinear 'up-up-down' fashion, followed by a planar 'Y' type magnetic structure. K2Co3(VO4)2CO3 (II) exhibits a canted antiferromagnetic ordering below TN = 8 K. The Curie-Weiss fit (200-350 K) gives a Curie-Weiss temperature of -42 K suggesting a dominant antiferromagnetic coupling in the Co2+ magnetic sublattices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt03389kDOI Listing

Publication Analysis

Top Keywords

single crystal
12
magnetic
9
crystal neutron
8
honeycomb triangular
8
triangular magnetic
8
space group
8
triangular
5
single
4
neutron magnetic
4
magnetic measurements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!