Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Viologen derivatives have been developed as negative electrolyte for neutral aqueous organic redox flow batteries (AOFBs), but the structure-performance relationship remains unclear. Here, it was investigated how the structure of viologens impacts their electrochemical behavior and thereby the battery performance, by taking hydroxylated viologens as examples. Calculations of frontier molecular orbital energy and molecular configuration promise to be an effective tool in predicting potential, kinetics, and stability, and may be broadly applicable. Specifically, a modified viologen derivative, BHOP-Vi, was proved to be the most favorable structure, enabling a concentrated 2 m battery to exhibit a power density of 110.87 mW cm and an excellent capacity retention rate of 99.953 % h .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202000381 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!