Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) is a woodboring pest that severely damages urban and plain afforestation trees in northern China. Cold hardiness is an important strategy for the insect to survived during low winter temperatures. Understanding the strategy of S. insularis might provide insights for pest management approaches. To assess the key factors affecting cold hardiness, we measured the supercooling point, freezing point, total water content, total fat content, glycogen content, and total protein content of overwintering larvae. The relationships between supercooling points, temperature, body size, and nutrients were analyzed. The results showed that the supercooling point and freezing point of the larvae decreased first, reached the lowest point in January, and then increased during the rest of the overwintering period. The supercooling point positively correlated with the daily average temperature and the daily minimum temperature. Total lipid content negatively correlated with the supercooling point, while glycogen content had a significant positive correlation with the supercooling point. The temperature may have a major impact on cold hardiness, whereas individual body size may have no significant influence over cold tolerance. During the overwintering process, glycogen and total lipid contents may directly affect cold hardiness. Therefore, the lipid and carbohydrate metabolism may play a role in the cold tolerance of S. insularis larvae. This study provides a physiological and biochemical basis for future metabolic studies on S. insularis larva and the research of overwintering strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toaa032 | DOI Listing |
Molecules
January 2025
REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
Fruits are essential components of the human diet, valued for their diverse bioactive compounds with potential health-promoting properties. This study focuses on three cold-hardy species, namely , , and , examining their polyphenolic content, antioxidant/antiradical activities, scavenging capacity and effects on intestinal cell viability (Caco-2 and HT29-MTX). A comprehensive profile of their phenolic compounds was identified, in descending order of total polyphenol content: > > .
View Article and Find Full Text PDFPlant Dis
January 2025
State Fruit Experiment Station, Missouri State University, Mountain Grove, Missouri, United States;
Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2025
Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
Terrestrial molluscs living in temperate and polar environments must contend with cold winter temperatures. However, the physiological mechanisms underlying the survival of terrestrial molluscs in cold environments and the strategies employed by them are poorly understood. Here we investigated the cold tolerance of Ambigolimax valentianus, an invasive, terrestrial slug that has established populations in Japan, Canada, and Europe.
View Article and Find Full Text PDFPlants (Basel)
January 2025
AirTech UAV Solutions Inc., Inverary, ON K0H 1X0, Canada.
Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
, valued for its perennial nature, broad adaptability, strong cold tolerance, and high economic value in forage production, plays a crucial role in combating grassland degradation, desertification, and salinization. Using morphological and cytogenetic methods, this study evaluated the cold tolerance, post-harvest regeneration capacity, and perennial characteristics of the accession 20HSC-Z9 in the Harbin region of China from 2020 to 2023. This accession exhibited a germination rate of over 90% and a 100% green-up rate, with purple coleoptiles indicating its strong cold tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!