Mammalian cells maintain the complex glycerophospholipid (GPL) class compositions of their various membranes within close limits because this is essential to their well-being or viability. Surprisingly, however, it is still not understood how those compositions are maintained except that GPL synthesis and degradation are closely coordinated. Here, we hypothesize that abrupt changes in the chemical activity of the individual GPL classes coordinate synthesis and degradation as well other the homeostatic processes. We have previously proposed that only a limited number of "allowed" or "optimal" GPL class compositions exist in cellular membranes because those compositions are energetically more favorable than others, that is, they represent local free energy minima (Somerharju et al 2009, Biochim. Biophys. Acta 1788, 12-23). This model, however, could not satisfactorily explain how the "optimal" compositions are sensed by the key homeostatic enzymes, that is, rate-limiting synthetizing enzymes and homeostatic phospholipases. We now hypothesize that when the mole fraction of a GPL class exceeds an optimal value, its chemical activity abruptly increases which (a) increases its propensity to efflux from the membrane thus making it susceptible for hydrolysis by homeostatic phospholipases; (b) increases its potency to inhibit its own biosynthesis via a feedback mechanism; (c) enhances its conversion to another glycerophospholipid class via a novel process termed "head group remodeling" or (d) enhances its translocation to other subcellular membranes. In summary, abrupt change in the chemical activity of the individual GPL classes is proposed to regulate and coordinate those four processes maintaining GPL class homeostasis in mammalian cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059623PMC
http://dx.doi.org/10.1096/fba.2019-00058DOI Listing

Publication Analysis

Top Keywords

chemical activity
16
gpl class
16
mammalian cells
12
processes maintaining
8
homeostasis mammalian
8
class compositions
8
synthesis degradation
8
activity individual
8
individual gpl
8
gpl classes
8

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!