Background: Panicle density of cereal crops such as wheat and sorghum is one of the main components for plant breeders and agronomists in understanding the yield of their crops. To phenotype the panicle density effectively, researchers agree there is a significant need for computer vision-based object detection techniques. Especially in recent times, research in deep learning-based object detection shows promising results in various agricultural studies. However, training such systems usually requires a lot of bounding-box labeled data. Since crops vary by both environmental and genetic conditions, acquisition of huge amount of labeled image datasets for each crop is expensive and time-consuming. Thus, to catalyze the widespread usage of automatic object detection for crop phenotyping, a cost-effective method to develop such automated systems is essential.
Results: We propose a point supervision based active learning approach for panicle detection in cereal crops. In our approach, the model constantly interacts with a human annotator by iteratively querying the labels for only the most informative images, as opposed to all images in a dataset. Our query method is specifically designed for cereal crops which usually tend to have panicles with low variance in appearance. Our method reduces labeling costs by intelligently leveraging low-cost weak labels (object centers) for picking the most informative images for which strong labels (bounding boxes) are required. We show promising results on two publicly available cereal crop datasets-Sorghum and Wheat. On Sorghum, 6 variants of our proposed method outperform the best baseline method with more than 55% savings in labeling time. Similarly, on Wheat, 3 variants of our proposed methods outperform the best baseline method with more than 50% of savings in labeling time.
Conclusion: We proposed a cost effective method to train reliable panicle detectors for cereal crops. A low cost panicle detection method for cereal crops is highly beneficial to both breeders and agronomists. Plant breeders can obtain quick crop yield estimates to make important crop management decisions. Similarly, obtaining real time visual crop analysis is valuable for researchers to analyze the crop's response to various experimental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060654 | PMC |
http://dx.doi.org/10.1186/s13007-020-00575-8 | DOI Listing |
J Food Sci
January 2025
School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China.
Whole-grain foods (WGFs) constitute a large part of humans' daily diet, making risk identification of WGFs important for health and safety. However, existing research on WGFs has paid more attention to revealing the effects of a single hazardous substance or various hazardous substances on food safety, neglecting the mutual influence between individual hazardous substances and between hazardous substances and basic information. Therefore, this paper proposes a causal inference of WGFs' risk based on a generative adversarial network (GAN) and Bayesian network (BN) to explore the mutual influence between hazardous substances and basic information.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
UMR Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion Montpellier France.
Micronutrient deficiencies remain a great public health challenge worldwide with iron, zinc, and vitamin A being the most problematic. It has been shown that biofortification through agronomic strategies can increase their micronutrient content, but data on the bioavailability remain limited. In Senegal, consumption of cereals and legumes is high, and orange-fleshed sweet potato (OFSP), rich in β-carotene, has been introduced a decade ago.
View Article and Find Full Text PDFMol Plant
January 2025
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN).
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!