C3a receptor blockade protects podocytes from injury in diabetic nephropathy.

JCI Insight

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.

Published: March 2020

Renal activation of the complement system has been described in patients with diabetic nephropathy (DN), although its pathological relevance is still ill-defined. Here, we studied whether glomerular C3a, generated by uncontrolled complement activation, promotes podocyte damage, leading to proteinuria and renal injury in mice with type 2 diabetes. BTBR ob/ob mice exhibited podocyte loss, albuminuria, and glomerular injury accompanied by C3 deposits and increased C3a and C3a receptor (C3aR) levels. Decreased glomerular nephrin and α-actinin4 expression, coupled with integrin-linked kinase induction, were also observed. Treatment of DN mice with a C3aR antagonist enhanced podocyte density and preserved their phenotype, limiting proteinuria and glomerular injury. Mechanistically, ultrastructural and functional mitochondrial alterations, accompanied by downregulation of antioxidant superoxide dismutase 2 (SOD2) and increased protein oxidation, occurred in podocytes and were normalized by C3aR blockade. In cultured podocytes, C3a induced cAMP-dependent mitochondrial fragmentation. Alterations of mitochondrial membrane potential, SOD2 expression, and energetic metabolism were also found in response to C3a. Notably, C3a-induced podocyte motility was inhibited by SS-31, a peptide with mitochondrial protective effects. These data indicate that C3a blockade represents a potentially novel therapeutic strategy in DN for preserving podocyte integrity through the maintenance of mitochondrial functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141402PMC
http://dx.doi.org/10.1172/jci.insight.131849DOI Listing

Publication Analysis

Top Keywords

c3a receptor
8
diabetic nephropathy
8
glomerular injury
8
c3a
7
podocyte
5
mitochondrial
5
receptor blockade
4
blockade protects
4
protects podocytes
4
injury
4

Similar Publications

Pancreatic β cell dysfunction is critical to the development of type 2 diabetes (T2D). We show that the complement receptor C3aR1 on β cells plays an essential role in maintaining β cell homeostasis, especially under the metabolic duress of obesity and T2D. Mice with β cell specific deletion of have worse glucose tolerance, lower insulin levels, and decreased β cell mass.

View Article and Find Full Text PDF

Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha () gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction.

View Article and Find Full Text PDF

CAF-macrophage crosstalk in tumour microenvironments governs the response to immune checkpoint blockade in gastric cancer peritoneal metastases.

Gut

November 2024

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China

Background: Peritoneal metastasis is the most common metastasis pattern of gastric cancer. Patients with gastric cancer peritoneal metastasis (GCPM) have a poor prognosis and respond poorly to conventional treatments. Recently, immune checkpoint blockade (ICB) has demonstrated favourable efficacy in the treatment of GCPM.

View Article and Find Full Text PDF

Neuromyelitis optica spectrum disorder (NMOSD) is associated with pathological aquaporin-4 immunoglobulin G (AQP4-IgG), which cause brain damage. However, the impact of AQP4-IgG on retinal tissue remains unclear. Additionally, dysregulated complement anaphylatoxins C3a and C5a, known to modulate the endothelial barrier, are implicated in NMOSD.

View Article and Find Full Text PDF

The role and treatment potential of the complement pathway in chronic pain.

J Pain

October 2024

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. Electronic address:

The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!