Introduction: Metoprolol succinate is a long-acting beta-blocker prescribed for the management of hypertension (HTN) and other cardiovascular diseases. Metabolomics, the study of end-stage metabolites of upstream biologic processes, yield insight into mechanisms of drug effectiveness and safety. Our aim was to determine metabolomic profiles associated with metoprolol effectiveness for the treatment of hypertension.

Methods: We performed a prospective pragmatic trial (NCT02293096) that enrolled patients between 30 and 80 years with uncontrolled HTN. Patients were started on metoprolol succinate at a dose based upon systolic blood pressure (SBP). Urine and blood pressure measurements were collected weekly. Individuals with a 10% decline in SBP or heart rate (HR) were considered responsive. Genotype for the CYP2D6 enzyme, the primary metabolic pathway for metoprolol, was evaluated for each subject. Unbiased metabolomic analyses were performed on urine samples using UPLC-QTOF mass spectrometry.

Results: Urinary metoprolol metabolite ratios are indicative of patient CYP2D6 genotypes. Patients taking metoprolol had significantly higher urinary levels of many gut microbiota-dependent metabolites including hydroxyhippuric acid, hippuric acid, and methyluric acid. Urinary metoprolol metabolite profiles of normal metabolizer (NM) patients more closely correlate to ultra-rapid metabolizer (UM) patients than NM patients. Metabolites did not predict either 10% SBP or HR decline.

Conclusion: In summary, urinary metabolites predict CYP2D6 genotype in hypertensive patients taking metoprolol. Metoprolol succinate therapy affects the microbiome-derived metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066769PMC
http://dx.doi.org/10.1186/s40246-020-00260-wDOI Listing

Publication Analysis

Top Keywords

metoprolol succinate
12
metoprolol
10
urinary metabolites
8
blood pressure
8
urinary metoprolol
8
metoprolol metabolite
8
patients metoprolol
8
metabolizer patients
8
metabolites predict
8
patients
7

Similar Publications

Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood.

View Article and Find Full Text PDF

Development and validation of a RP-HPLC method for simultaneous determination of cimetidine, metoprolol tartrate and phenol red for intestinal perfusion studies.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06100 Türkiye. Electronic address:

A new reversed phase high-performance liquid chromatography (RP-HPLC) method, with a short analysis time and easy to apply, was developed for the simultaneous detection of cimetidine (CIM), metoprolol tartrate (MT) and phenol red (PR) for use in intestinal perfusion studies. The analysis was performed with phosphate buffer (pH 5.0, 12.

View Article and Find Full Text PDF

Peripheral nerves promote mouse bone marrow regeneration by activating b2 and b3 adrenergic receptor signaling, raising the possibility that non-selective b blockers could inhibit engraftment after hematopoietic cell transplants (HCTs). We observed no effect of b blockers on steady-state mouse hematopoiesis. However, mice treated with a non-selective b blocker (carvedilol), but not a b1-selective inhibitor (metoprolol), exhibited impaired hematopoietic regeneration after syngeneic or allogeneic HCTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!