This study was aimed to evaluate occurrence of antibiotic resistance and the presence of resistance determinants among clinical isolates of Acinetobacter baumannii. This cross-sectional study from January to September 2018 was performed on 59 A. baumannii strains isolated from clinical samples in the north of Iran. Isolates were identified by standard microbiologic tests and molecular method. Antimicrobial susceptibility testing was carried out by disk diffusion and broth microdilution methods. The presence of carbapenem resistance genes was detected by PCR method. All isolates were resistant to cefepime, meropenem, imipenem and ceftazidime. The lowest resistance rate was observed against doxycycline with 33.9%. Minimum inhibitory concentration (MIC) results showed that all carbapenem-resistant A. baumannii (CRAB) isolates were susceptible to colistin with MIC50 and MIC90 values of 1/2 µg/mL. Among 59 CRAB, blaOXA-23-like was the most prevalent gene (86.4%) followed by blaOXA-24-like (69.5%). Meanwhile, none of the clinical isolates harbored blaOXA-58-like gene. We found a high prevalence of CRAB strains harboring OXA-type carbapenemases in the north of Iran. Our results suggests that the presence of OXA-type genes was not directly correlated with the increase of imipenem MIC level, but can be clinically important as they contribute to the selection of CRAB strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/030.2020.01031 | DOI Listing |
Nat Microbiol
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.
Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China.
Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression.
View Article and Find Full Text PDFCan J Microbiol
January 2025
University of Manitoba, Department of Microbiology, Winnipeg, Canada;
Acinetobacter baumannii is an opportunistic pathogen that is often studied in commonly used rich media in laboratories worldwide. Due to the metabolic versatility of A. baumannii, it can be cultured in different growth mediums; however, this can lead to genotypic and phenotypic variations.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!