Technical note: development and validation of a Monte Carlo tool for analysis of patient-generated photon scatter.

Phys Med Biol

Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada. Department of Physics and Astronomy, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada. Author to whom correspondence is to be addressed.

Published: May 2020

Scattered radiation unavoidably generated in the patient will negatively impact both kilovoltage (KV) and megavoltage (MV) imaging applications. Recently, 'hybrid' methods (i.e. combining analytical and Monte Carlo (MC) techniques) are being investigated as a solution to accurately yet quickly calculate the scattered contribution for both KV and MV images. We have developed a customized MC simulation user code for investigating the individual components of patient-scattered photon fluence, which serves as a valuable tool in this area of research. The MC tool is based on the EGSnrc/DOSXYZnrc user code. The IAUSFL flag options associated with subroutine AUSGAB, combined with LATCH tracking, are used to classify the various interactions of particles with the media. Photons are grouped into six different categories: primary, 1st Compton scatter, 1st Rayleigh scatter, multiple scatter, bremsstrahlung, and positron annihilation. We take advantage of the geometric boundary check in DOSXYZnrc, to write exiting photon particle information to a phase-space file. The tool is validated using homogeneous and heterogeneous phantom configurations with monoenergetic and polyenergetic beams under parallel and divergent beam geometry, comparing MC-simulated exit primary fluence and singly-scattered fluence to corresponding analytical calculations. This MC tool has been validated to separately score the primary and scatter fluence components of the KV and MV imaging applications in the field of radiation therapy. The results are acceptable for the various configurations and beam energies tested here. Overall, the mean percentage differences are less than 0.2% and standard deviations less than 1.6%. This will be a critical test instrument for research in photon scatter applications and particularly for the development of hybrid methods, and is freely available from the authors for research purposes..

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab7eefDOI Listing

Publication Analysis

Top Keywords

monte carlo
8
photon scatter
8
imaging applications
8
user code
8
tool validated
8
scatter
6
tool
5
technical note
4
note development
4
development validation
4

Similar Publications

Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) plays a crucial role in numerous cellular processes, yet its impact on human behavior remains underexplored. The current paper proposes a novel covariance structure model with seven parameters to specifically isolate and quantify mtDNA effects on human behavior. This approach uses extended pedigrees to obtain estimates of mtDNA variance while controlling for other genetic and environmental influences.

View Article and Find Full Text PDF

Radiation dose and diagnostic image quality are opposing constraints in x-ray CT. Conventional methods do not fully account for organ-level radiation dose and noise when considering radiation risk and clinical task. In this work, we develop a pipeline to generate individualized organ-specific dose and noise at desired dose levels from clinical CT scans.

View Article and Find Full Text PDF

On the correction factors for small field dosimetry in 1.5T MR-linacs.

Phys Med Biol

January 2025

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, Athens, Attica, 11527, GREECE.

Clinical dosimetry in the presence of a 1.5T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields.

View Article and Find Full Text PDF

Radiation from wireless communication devices inside intelligent connected vehicles has been an expeditious growth of concern regarding possible adverse effects on human health. Due to the significant differences in the working scenarios compared to traditional mobile products, the traditional measuring systems of specific absorption rate (SAR) are not applicable to in-vehicle scenarios. This paper has developed a SAR measurement system and a SAR measurement method, which are suitable for in-vehicle scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!