Searching for cost-effective photothermal material that can harvest the full solar spectrum is critically important for solar-driven water evaporation. Metal oxides are cheap materials but cannot cover the full solar spectrum. Here we prepared a hydrogenated metal oxide (HMoO) material, in which H-doping causes the insulator-to-metal phase transition of the originally semiconductive MoO. It offers a blackbody-like solar absorption of ≥95% over the entire visible-to-near-infrared solar spectrum, owing to its unusual quasi-metallic energy band, and high solar-to-heat conversion rate due to quick relaxation of excited electrons. Using a self-floating HMoO/airlaid paper photothermal film, we achieved a stable and high water vapor generation rate of 1.37 kg m h, a superb solar-to-vapor efficiency of 84.8% under 1 sun illumination, and daily production of 12.4 L of sanitary water/m from seawater under natural sunlight. This thus opens a new avenue of designing cost-effective photothermal materials based on metal oxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00592 | DOI Listing |
J Mol Model
January 2025
Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.
View Article and Find Full Text PDFRSC Adv
January 2025
Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.
View Article and Find Full Text PDFACS Omega
December 2024
School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China.
Solar photovoltaic (PV) conversion has become a key area in today's energy supply. However, incomplete utilization of the PV cell bandgap results in the conversion of photon energy outside the bandgap into waste heat, reducing the overall efficiency. Improving spectral utilization efficiency and mitigating the effects of PV waste heat are top priorities.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto de Alta Investigación, Universidad de Tarapacá, 1000000, Arica, Chile.
CuZnSn(S,Se) (CZT(S,Se)) thin films exhibit the characteristics necessary to be effective absorbers in solar cells. In this report, the room temperature experimental Raman scattering spectra, recorded at different excitation wavelengths, are systematically analyzed theoretically using the results of DFT harmonic frequencies calculations at the Γ-point for various modifications of kesterite (KS), stannite (ST), and pre-mixed Cu-Au (PMCA) crystal structures. The specific anharmonism-induced features in the spectra of CZT(S,Se) crystals are identified, and the spectral lineshapes at varied strengths of anharmonic interaction are simulated.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, Kuwait University, 13060, Kuwait City, Kuwait.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!