Beside sensing and delivery, another peculiar property arising from confinement in discrete molecular hosts comes from the possibility to have in close proximity, and in defined position, two different molecules (hetero-coencapsulation). This phenomenon can be tuned considering steric and electronic properties of the guests. In this work, a study on the parameters affecting homo- and hetero-coencapsulation processes within a supramolecular cage is reported. In particular, different benzoate guests were bound within a supramolecular cage containing two metal-binding sites and the experimental binding thermodynamics measured. Unexpectedly, from competition experiments it was observed that the maximum concentration of hetero-coencapsulation is achieved if a weakly binding guest is used to partially displace a strongly binding guest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202000574 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.
Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Tailored design of organic linkers or metal nodes can introduce desirable functionalities into metal-organic cages (MOCs), significantly expanding their potential applications. In this study, we present a viable approach for engineering acyl-type metal nodes to create interior oxygen-rich sites within MOCs, enabling specific recognition of metal ions, including radioactive contaminants, while maintaining the structural integrity of the MOCs. A novel MOC featuring a uranyl-sealed calix[4]resorcinarene (C[4]R)-based multisite cavity, referred to as UOC, is synthesized as a prototype.
View Article and Find Full Text PDFInorg Chem
January 2025
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Cage-based MOFs, with their customizable chemical environments and precisely controllable nanospaces, show great potential for the selective adsorption of guest molecules with specific structures. In this work, we have constructed a novel cage-based MOF [(CH)NH][(UO)(TMTTA)]·11.5DMF·2HO (IHEP-51), utilizing a triazine derivative poly(carboxylic acid), 4,4',4″-(((1,3,5-triazine-2,4,6-triyl)tris(((4-carboxycyclohexyl)methyl)azanediyl))tris(methylene))tribenzoic acid (HTMTTA), as an organic ligand and uranyl as a metal node.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and the UCR Center for Catalysis, University of California-Riverside, Riverside, California 92521, United States.
suite of internally functionalized FeL cage complexes has been synthesized with lipophilic end groups to allow dissolution in varied solvent mixtures, and the scope of their molecular recognition of a series of neutral, nonpolar guests has been analyzed. The lipophilic end groups confer cage solubility in solvents with a wide range of polarities, from hexafluoroisopropanol (HFIP) to tetrahydrofuran, and the hosts show micromolar affinities for neutral guests, despite having no flat panels enclosing the cavity. These hosts allow interrogation of the effects of an internal functional group on guest binding properties, as well as solvent-based driving forces for recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!