Vascular smooth muscle cells (VSMCs) are an important source of foam cells in atherosclerosis. The mechanism for VSMC-derived foam cell formation is, however, poorly understood. Here, we demonstrate that the P2RY12/P2Y12 receptor is important in regulating macroautophagy/autophagy and VSMC-derived foam cell formation in advanced atherosclerosis. Inhibition of the P2RY12 receptor ameliorated lipid accumulation and VSMC-derived foam cell formation in high-fat diet-fed mice (atherosclerosis model) independent of LDL-c levels. Activation of the P2RY12 receptor blocked cholesterol efflux via PI3K-AKT, while genetic knockdown or pharmacological inhibition of the P2RY12 receptor inhibited this effect in VSMCs. Phosphoproteomic analysis showed that the P2RY12 receptor regulated the autophagy pathway in VSMCs. Additionally, activation of the P2RY12 receptor inhibited MAP1LC3/LC3 maturation, SQSTM1 degradation, and autophagosome formation in VSMCs. Genetic knockdown of the essential autophagy gene significantly attenuated P2RY12 receptor inhibitor-induced cholesterol efflux in VSMCs. Furthermore, activation of the P2RY12 receptor led to the activation of MTOR through PI3K-AKT in VSMCs, whereas blocking MTOR activity (rapamycin) or reducing MTOR expression reversed the inhibition of cholesterol efflux mediated by the P2RY12 receptor in VSMCs. , inhibition of the P2RY12 receptor promoted autophagy of VSMCs through PI3K-AKT-MTOR in advanced atherosclerosis in mice, which could be impeded by an autophagy inhibitor (chloroquine). Therefore, we conclude that activation of the P2RY12 receptor decreases cholesterol efflux and promotes VSMC-derived foam cell formation by blocking autophagy in advanced atherosclerosis. Our study thus suggests that the P2RY12 receptor is a therapeutic target for treating atherosclerosis. 2-MeSAMP: 2-methylthioadenosine 5'-monophosphate; 8-CPT-cAMP: 8-(4-chlorophenylthio)-adenosine-3',5'-cyclic-monophosphate; ABCA1: ATP binding cassette subfamily A member 1; ABCG1: ATP binding cassette subfamily G member 1; ACTB: actin beta; ADPβs: adenosine 5'-(alpha, beta-methylene) diphosphate; ALs: autolysosomes; AMPK: AMP-activated protein kinase; APOA1: apolipoprotein A1; APs: autophagosomes; ATG5: autophagy related 5; ATV: atorvastatin; AVs: autophagic vacuoles; CD: chow diet; CDL: clopidogrel; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; dbcAMP: dibutyryl-cAMP; DIL-oxLDL: dioctadecyl-3,3,3,3-tetramethylin docarbocyanine-oxLDL; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; EVG: elastic van gieson; HE: hematoxylin-eosin; HDL: high-density lipoprotein; HFD: high-fat diet; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDL-c: low-density lipoprotein cholesterol; LDs: lipid droplets; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Masson: masson trichrome; MCPT: maximal carotid plaque thickness; MK2206: MK-2206 2HCL; NBD-cholesterol: 22-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino)-23,24-bisnor-5-cholen-3β-ol; OLR1/LOX-1: oxidized low density lipoprotein receptor 1; ORO: oil Red O; ox-LDL: oxidized low-density lipoprotein; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TIC: ticagrelor; ULK1: unc-51 like autophagy activating kinase 1; VSMCs: vascular smooth muscle cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078663PMC
http://dx.doi.org/10.1080/15548627.2020.1741202DOI Listing

Publication Analysis

Top Keywords

p2ry12 receptor
48
vsmc-derived foam
20
foam cell
20
cell formation
20
advanced atherosclerosis
16
activation p2ry12
16
cholesterol efflux
16
receptor
13
p2ry12
12
inhibition p2ry12
12

Similar Publications

Amino acid substitutions in the kinase domain of the human CSF1R protein are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (Glu631Lys; E631K) in the mouse Csf1r locus. Previous analysis demonstrated that heterozygous mutation (Csf1r) had a dominant inhibitory effect on CSF1R signaling in vitro and in vivo but did not recapitulate human disease pathology.

View Article and Find Full Text PDF
Article Synopsis
  • - Microglia play a key role in regulating cerebral blood flow (CBF), particularly during activities like whisker stimulation or ATP injection, affecting both baseline levels and increases in blood flow.
  • - Depleting microglia reduces activity-dependent blood flow responses, but the body still responds normally to other stimuli like adenosine, indicating a specific function for microglia in this process.
  • - The regulation of CBF by microglia involves the ATP-sensing receptor P2ry12 and the enzyme CD39, which converts extracellular ATP into adenosine, crucial for neurovascular coupling and maintaining healthy blood flow responses.
View Article and Find Full Text PDF

P2Y12 receptors on the platelet plasma membrane are targeted by several antiplatelets drugs. Although oligomerization and functioning of P2Y12 receptors depend on the membrane environment, little is known about their preferred membrane localization and the role of surrounding lipid composition, especially the arachidonic acids (ARA), which are abundant in platelets. Coarse-grained molecular dynamics simulations of platelet plasma membrane based on the lipidomics data were used to investigate the P2Y12 lipid environment and the involvement of ARA in its oligomerization in platelet plasma membranes.

View Article and Find Full Text PDF

Calcium channel blockers (CCBs) are frequently co-administered with clopidogrel in cardiovascular disease. Although an inhibitory drug interaction exists between them, comprehensive large-scale studies for its validation are lacking. We investigated interactions between CCBs and clopidogrel using a large-scale national registry of patients who underwent percutaneous coronary intervention (PCI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!