Stored Gelatinized Waxy Potato Starch Forms a Strong Retrograded Gel at Low pH with the Formation of Intermolecular Double Helices.

J Agric Food Chem

Whistler Center for Carbohydrate Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47906, United States.

Published: April 2020

Waxy potato amylopectin has longer internal and external linear chains than rice or corn amylopectin that are capable of retrograding to a higher degree, but its molecular recrystallization is impeded by unprotonated phosphate groups. Here, we studied whether retrogradation and gel properties of waxy potato starch can be enhanced by lowering pH. The gel strength of waxy potato starch was strongly inversely correlated with pH, going from 10 to 4, and its magnitude was higher at pH values in which the ζ potential of the system was low. Waxy potato starch formed a strong aggregate gel driven by the formation of intermolecular double helices (' drop ≈ 1358 Pa, melting Δ = 9.5 J/g) when conditions that reduce electrostatic repulsion (pH 4, ζ = -1.7) are used, a phenomenon that was not observed in low-phosphorylated waxy cereal starches (i.e., waxy rice and corn).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b08268DOI Listing

Publication Analysis

Top Keywords

waxy potato
20
potato starch
16
formation intermolecular
8
intermolecular double
8
double helices
8
rice corn
8
waxy
7
potato
5
stored gelatinized
4
gelatinized waxy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!