Opioid receptors (ORs) are among the best-studied G protein-coupled receptors due to their involvement in neurological disorders and important role in pain treatment. Contrary to the classical monomeric model, indirect evidence suggests that ORs might form dimers, which could be endowed with a distinct pharmacological profile, and, thus, be targeted to develop innovative pharmacological therapies. However, direct evidence for the spontaneous formation of OR dimers in living cells under physiological conditions is missing. Despite a growing interest in the κ opioid receptor (KOR), KOR-selective fluorescent probes are particularly scarce in the literature. Herein, we present the first set of fluorescent KOR-selective probes with antagonistic properties. Two of these were employed in single-molecule microscopy (SMM) experiments to investigate KOR homodimerization, localization, and trafficking. Our findings indicate that most KORs labeled with the new fluorescent probes are present as apparently freely diffusing monomers on the surface of a simple cell model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.9b02011 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
J Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Molecules
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.
View Article and Find Full Text PDFMolecules
January 2025
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany.
In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!