Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method.

J Chem Theory Comput

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.

Published: April 2020

Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is SiH which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.8b00536DOI Listing

Publication Analysis

Top Keywords

configuration interaction
12
selected configuration
8
adaptive sampling
8
fast sorting
8
sorting algorithms
8
asci search
8
driven search
8
basis sets
8
fast
6
algorithms
5

Similar Publications

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC grading. However, current methods for TILs quantification are based on subjective visual assessments, leading to inter-observer variability and inconsistent diagnostic reproducibility.

View Article and Find Full Text PDF

On topological characterizations and computational analysis of benzenoid networks for drug discovery and development.

J Mol Graph Model

January 2025

Department of Mathematics & Actuarial Science, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India. Electronic address:

Topological indices are numerical invariants that provide key insights into the structural properties of molecular graphs and are crucial in predicting physio-chemical and biological activities. This paper applies established computational methodologies for analyzing benzenoid networks and their application to polycyclic aromatic hydrocarbons (PAHs) through degree-based topological indices computed via M-polynomial and NM-polynomial approaches. By examining tessellations, including linear chain, hexagonal, rhomboidal, and triangular configurations alongside their line graphs, this work highlights the influence of molecular topology on biological activity.

View Article and Find Full Text PDF

SDSPT2s:SDSPT2 with Selection.

J Chem Theory Comput

January 2025

Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China.

As an approximation to SDSCI [static-dynamic-static (SDS) configuration interaction (CI), a minimal MRCI; , , 1481], SDSPT2 [ , , 2696] is a CI-like multireference (MR) second-order perturbation theory (PT2) that treats single and multiple roots in the same manner. This feature permits the use of configuration selection over a large complete active space (CAS) to end up with a much reduced reference space ̃, which is connected only with a small portion (̃) of the full first-order interacting space connected to . The most expensive portion of the reduced interacting ̃ space (which involves three active orbitals) can further be truncated by partially bypassing its generation followed by an integral-based cutoff.

View Article and Find Full Text PDF

Noncollinear Magnetic Configurations in Frustrated Magnets.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

The exploration of materials with nanoscale noncollinear configurations has been continuously attracting attention due to the prospective applications in high-performance magnetic devices. Compared to ferromagnetic materials, noncollinear structures in frustrated magnets hold greater research value due to their smaller sizes and unique properties. However, an effective description of the nanoscale noncollinear domain structures in frustrated magnets is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!