The advanced glycation end products (AGEs) constitute a wide variety of substances synthesized from interactions between amino groups of proteins and reducing sugars, which excess induces pathogenesis of chronic diseases. Brazil is the major producer of citrus, a low-cost source of hesperidin, which is a polyphenol recognized for its capacity to inhibit AGEs formation. This is the first work to evaluate the effects of a polyphenolic fraction derived from citrus wastes on the antiglycation and on the inhibition properties of digestive enzymes on the possibility to process these wastes in high value-added products. At concentrations of 10, 15 and 20 mg/mL inhibition of AGEs was higher than 60%. The extracts were able to inhibit by 76% the activity of pancreatic lipase and by 98% the activity of α-glucosidase. For the α-amylase the inhibition capacity was lower than 50%. Strong correlation was obtained among anti-glycation with polyphenolic content and antioxidant capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2020.1737941 | DOI Listing |
Inflammation
January 2025
Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
Defect engineering is an important method to control material properties. In this paper, large-scale sampling density functional theory (DFT) was used to investigate the adsorption and sensing behavior of NH and NO on a WSe monolayer, with a focus on the effect of selenium vacancy concentration. The results demonstrate that selectivity is inhibited on a perfect monolayer due to the similar adsorption energy of the two gases, NH and NO, while selectivity can be obtained for both of them under different selenium vacancy concentrations (NH about 2-5.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, Uppsala SE-75120, Sweden.
[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!