The main goal of this study was to evaluate the impact of different ionizing radiation doses on the mineral (carbonate/phosphate ratio, crystallinity index [CI]) and organic (amide III/phosphate, amide I sub-band ratios) structures, as well as the microhardness, of enamel and dentin, along with their influence on the bonding strength stability of the etch-and-rinse (ER) and self-etch (SE) dental adhesive strategies. Enamel and dentin human tissue specimens were irradiated (with 0, 20, 40, and 70 Gy radiation doses, respectively) and sectioned to perform an attenuated total reflection-Fourier transform IR spectroscopy assay (ATR-FTIR) and the Vickers microhardness (VHN) test to conduct a biochemical and biomechanical evaluation of the tissues. Regarding the adhesive properties, restored enamel and dentin specimens exposed to the same radiation doses were submitted to microshear bond strength (μSBS) tests for enamel in immediate time (IM) and to microtensile bond strength (μTBS) tests after for IM and 12-month (12 M) period of time, Mann-Whitney U tests were implemented, using the ATR-FTIR data for significant differences (α < 0.05), and three- and two-way analyses of variance, along with post-testing, were performed on the μTBS and μSBS data (MPa), respectively (Tukey post hoc test at α = 0.05). The ATR-FTIR results showed a significant decrease ( < .05) in the amide III/phosphate ratio after 20 Gy for the enamel and after 40 Gy for the dentin. The CI was significantly reduced for both tissues after a dose of 70 Gy ( < .05). All radiation doses significantly decreased microhardness values, relative to the respective enamel and dentin controls ( < .05). In both tissues and adhesive strategies, the decrease in bond strength was influenced by ionizing radiation starting from 40 Gy. The ER strategy showed high percentages of enamel cohesive failure. In general, ER in both tissues showed greater and more stable bond strength than SE against increased radiation doses and long term. It is possible to conclude that structural alterations of enamel and dentin are generated by all radiation doses, decreasing the microhardness of dental hard tissues and influencing bond strength over time, starting at 40 Gy radiation dose. The etch-and-rinse strategy demonstrates better adhesive performance but generates cohesive fractures in the enamel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553002.2020.1741718 | DOI Listing |
Front Public Health
January 2025
Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
Biodosimetry is crucial for assessing ionizing radiation exposure to guide medical responses. Electron spin resonance (ESR) spectroscopy using fingernails can be effectively used for both occupational and public dose assessments in radiological accidents because of their accessibility and ability to retain stable radiation-induced free radicals. However, despite two decades of research, challenges remain in achieving accurate fingernail dosimetry, mainly owing to the variation in ESR signals among individuals.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.
Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.
View Article and Find Full Text PDFCancer Imaging
January 2025
Melbourne Theranostic Innovation Centre, Level 8, 14-20 Blackwood St, North Melbourne, VIC, 3051, Australia.
True total-body and extended axial field-of-view (AFOV) PET/CT with 1m or more of body coverage are now commercially available and dramatically increase system sensitivity over conventional AFOV PET/CT. The Siemens Biograph Vision Quadra (Quadra), with an AFOV of 106cm, potentially allows use of significantly lower administered radiopharmaceuticals as well as reduced scan times. The aim of this study was to optimise acquisition protocols for routine clinical imaging with FDG on the Quadra the prioritisation of reduced activity given physical infrastructure constraints in our facility.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, Aveiro, 3810-193, Portugal.
Background: Bone fractures represent a global public health issue. Over the past few decades, a sustained increase in the number of incidents and prevalent cases have been reported, as well as in the years lived with disability. Current monitoring techniques predominantly rely on imaging methods, which can result in subjective assessments, and expose patients to unnecessary cumulative doses of radiation.
View Article and Find Full Text PDFOral Oncol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University Taoyuan Taiwan Republic of China. Electronic address:
Background: The current NCCN guidelines advocate for the use of adjuvant radiotherapy (RT) or chemoradiotherapy (CRT) in pT3N0 oral cavity squamous cell carcinoma (OCSCC). Here, we sought to evaluate whether postoperative RT/CRT may confer a survival advantage in pT3N0 patients who lack adverse pathological features.
Methods: A dataset of 852 pT3N0 OCSCC patients treated between 2018 and 2021 was analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!