Supramolecular hydrogels based on inclusion complexation between cyclodextrins (CDs) and polymers have attracted much interest because of their potential for biomedical applications. It is also attractive to incorporate stimuli-responsive properties into the system to create "smart" hydrogels. Herein, a poly(-isopropylacrylamide) (PNIPAAm) star polymer with a β-CD core and an adamantyl-terminated poly(ethylene glycol) (Ad-PEG) polymer were synthesized. They self-assembled into a thermoresponsive pseudo-block copolymer through host-guest complexation and formed supramolecular micelles with the change in environment temperature. Subsequently, an injectable polypseudorotaxane-based supramolecular hydrogel was formed between α-CD and the PEG chains of the pseudo-block copolymer. The hydrogel had a unique network structure involving two types of supramolecular self-assemblies between cyclodextrins and polymers, that is, the host-guest complexation between β-CD units and adamantyl groups and the polypseudorotaxane formation between α-CD and PEG chains. We hypothesize that the dual supramolecular hydrogel formed at room temperature may be enhanced by increasing the temperature over the lower critical solution temperature of PNIPAAm because of the hydrophobic interactions of PNIPAAm segments. Furthermore, if the hydrogel is applied for sustained delivery of hydrophobic drugs, the copolymer dissolved from the hydrogel could micellize and continue to serve as micellar drug carriers with the drug encapsulated in the hydrophobic core. Rheological tests revealed that the hydrophobic interactions of the PNIPAAm segments could significantly enhance the strength of the hydrogel when the temperature increased from 25 to 37 °C. As compared to hydrogels formed by α-CD and PEG alone, the sustained release property of this thermoresponsive hydrogel for an anticancer drug, doxorubicin (DOX), improved at 37 °C. The hydrogel dissolved slowly and released the pseudo-block copolymer in the form of micelles that continued to serve as drug carriers with DOX encapsulated in the hydrophobic core, achieving a better cellular uptake and anticancer effect than free DOX controls, even in multidrug-resistant cancer cells. According to these findings, the dual supramolecular hydrogel developed in this work with remarkable thermoresponsive properties might have potential for sustained anticancer drug delivery with enhanced therapeutic effect in multidrug-resistant cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.0c00077 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Herein, a supramolecular DNA nanodevice was formed via the rolling circle amplification (RCA) and hybridization chain reaction (HCR) cascade reaction on a tetrahedral DNA nanostructure (TDN) to achieve simultaneous sensitive detection and intracellular imaging of dual-miRNAs related to liver cancer. The supramolecular DNA nanodevice effectively addressed the limitations of low probe loading capacity in traditional TDN nanodevices by enriching plenty of signal probes around a single TDN, significantly enhancing the fluorescence signal. Impressively, the supramolecular DNA nanodevice with a TDN fulcrum and dense DNA structure imparted the nanodevice with strong rigidity, ensuring the stability of the signal probes to decrease aggregation quenching for further increasing the fluorescence response.
View Article and Find Full Text PDFJ Dent Res
December 2024
State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
The cross-linking reagent has been proposed as a means of modifying dentin collagen, inhibiting matrix metalloproteinase activities, and enhancing bond durability during dentin bonding procedures. This study aimed to synthesize an operation-friendly dual cross-linking reagent-3-(4-formyphenoxy)-2-hydroxypropyl methacrylate (FPA)-to assess its ability to cross-link dentin collagen and reduce enzymatic activity at the bonding interface. Cytotoxicity was evaluated by a cell counting kit-8 test and calcein AM/propidium iodide assay.
View Article and Find Full Text PDFHerein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!