Malaria forecasts from dynamical systems have never been attempted at the health district or local clinic catchment scale, and so their usefulness for public health preparedness and response at the local level is fundamentally unknown. A pilot preoperational forecasting system is introduced in which the European Centre for Medium Range Weather Forecasts ensemble prediction system and seasonal climate forecasts of temperature and rainfall are used to drive the uncalibrated dynamical malaria model VECTRI to predict anomalies in transmission intensity 4 months ahead. It is demonstrated that the system has statistically significant skill at a number of sentinel sites in Uganda with high-quality data. Skill is also found at approximately 50% of the Ugandan health districts despite inherent uncertainties of unconfirmed health reports. A cost-loss economic analysis at three example sentinel sites indicates that the forecast system can have a positive economic benefit across a broad range of intermediate cost-loss ratios and frequency of transmission anomalies. We argue that such an analysis is a necessary first step in the attempt to translate climate-driven malaria information to policy-relevant decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038892 | PMC |
http://dx.doi.org/10.1029/2018GH000157 | DOI Listing |
Characterization of serological responses to Plasmodium falciparum (Pf) is of interest to understand disease burden and transmission dynamics; however, their interpretation is challenging. Dried blood spots from 30,815 participants aged 6 months to 15 years from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey were analyzed by multiplex bead-based assay to measure immunoglobulin G (IgG) to Pf-stage-specific MSP-1, AMA-1, GLURPR0, LSA-1, and CSP. These IgG levels were analyzed by principal component analysis (PCA).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Biotechnology, KIIT Deemed To be University, Bhubaneswar, Odisha, India.
The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany; Department of Biology, Muni University, Arua, Uganda; Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany; Department of Biological Sciences, Macquarie University, Sydney, Australia. Electronic address:
Malaria parasites of the genus Polychromophilus commonly infect vespertilionid and miniopterid bats, and are transmitted by bat flies (Nycteribiidae). While Polychromophilus murinus has been recorded sporadically in Europe, its host range, distribution and phylogeographic structure have not been explored. Here we investigate the prevalence and genetic diversity of P.
View Article and Find Full Text PDFJ Math Biol
December 2024
School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
The epidemiological behavior of Plasmodium vivax malaria occurs across spatial scales including within-host, population, and metapopulation levels. On the within-host scale, P. vivax sporozoites inoculated in a host may form latent hypnozoites, the activation of which drives secondary infections and accounts for a large proportion of P.
View Article and Find Full Text PDFTrop Med Int Health
December 2024
Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background: The study aims to determine the host preference for blood feeding among potential hosts of Anopheles stephensi in Iran, using the Multiplex-PCR method. An. stephensi is the primary malaria vector in urban areas of South Asia and the Middle East, including southern Iran, where approximately 30.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!