The Bystander Effect of Ultraviolet Radiation and Mediators.

J Biomed Phys Eng

PhD, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Published: February 2020

A bystander effect is biological changes in non-irradiated cells by transmitted signals from irradiated bystander cells, which causes the radiation toxic effects on the adjacent non-irradiated tissues. This phenomenon occurs by agents such as ionizing radiation, ultraviolet radiation (UVR) and chemotherapy. The bystander effect includes biological processes such as damage to DNA, cell death, chromosomal abnormalities, delay and premature mutations and micronuclei production. The most involved genes in creating this phenomenon are cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the nuclear factor of kappa B (NFkB) and Mitogen-Activated Protein Kinases (MAPKs). Radiation generated reactive oxygen species (ROS) can damage DNA, membranes and protein buildings. Studies have shown that Vitamin C, Hesperidin, and melatonin can reduce the number of ROS and have a protective role. Silver nanoparticles (Ag NPs) are the most abundant nanoparticles produced and when they enter cells, they can create DNA damage. Studies have shown that combined treatment with UVR and silver nanoparticles could form γ-H2AX and 8-hydroxy-2'-deoxyguanosine (8-OHdG) synergistically. This article reviews the direct and the bystander effects of UVR on the nuclear DNA, the effect of radioprotectors and Ag NPs on these effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036410PMC
http://dx.doi.org/10.31661/jbpe.v0i0.956DOI Listing

Publication Analysis

Top Keywords

ultraviolet radiation
8
damage dna
8
silver nanoparticles
8
bystander
5
radiation
5
bystander ultraviolet
4
radiation mediators
4
mediators bystander
4
bystander biological
4
biological changes
4

Similar Publications

Dual-Response UV Radiation Detector Based on Color Switching and Photoresistance Response for UV Radiation Monitoring.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, People's Republic of China.

Ultraviolet (UV) irradiation is dangerous and can cause serious skin diseases if skin is excessively exposed to it. Thus, it is highly desirable for human health to monitor the UV radiation intensity. In this report, a flexible and stretchable dual-response UV radiation detector is reported by integrating UV-responsive color-switchable WO quantum dots (QDs) with an electrical hydrogel.

View Article and Find Full Text PDF

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Nano structural regulation of lignin and evaluation of its ultraviolet light absorption properties through quantum chemistry calculations.

Int J Biol Macromol

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.

Lignin, a biomass-derived material containing chromophores, possesses the potential to serve as a versatile organic ultraviolet (UV) light screening agent. By employing quantum chemical computation techniques, an amphoteric deep eutectic solvent (DES) based on sulfamic acid was purposefully designed and engineered to create a solvent system tailored for the nanoparticle formation and functionalization of lignin. As confirmed by experimental evidence, the size of the modified lignin nanoparticles (LNPs) varies from 168.

View Article and Find Full Text PDF

Ultraviolet radiation (UV) causes certain side effects to the skin, and their accumulation to a certain extent can lead to accelerated aging of the skin. Recent studies suggest that α-arbutin may be useful in various disorders such as hyperpigmentation disorders, wound healing, and antioxidant activity. However, the role of α-arbutin in skin photodamage is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!