Efficacy and safety of photodynamic therapy with RLP068 for diabetic foot ulcers: a review of the literature and clinical experience.

Drugs Context

Unit of Metabolic and Endocrine Diseases, Centro Catanese di Medicina e Chirurgia, Catania, Italy.

Published: February 2020

This article is the second part of a literature review concerning diabetic foot ulcers (DFUs) and the use of antimicrobial photodynamic therapy (PDT). PDT involves the topical application of a photosensitiser into the tissue, followed by illumination that induces the formation of reactive oxygen species (ROS). PDT provides bacterial inactivation and promotes wound healing, and it can be used to manage the infection and microbial colonisation of DFUs. It has pivotal advantages in comparison with chemotherapeutics, such as no potential to induce resistance, and a wide spectrum of activity. Tetracationic Zn(II) phthalocyanine derivatives have been developed for PDT. Among these, we would like to focus on RLP068, whose antimicrobial activity has been widely demonstrated in preclinical studies and in a clinical trial. This article reports previously published evidence and presents four unpublished clinical cases of DFUs treated in the real-life setting with PDT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048156PMC
http://dx.doi.org/10.7573/dic.2019-10-3DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
diabetic foot
8
foot ulcers
8
pdt
5
efficacy safety
4
safety photodynamic
4
therapy rlp068
4
rlp068 diabetic
4
ulcers review
4
review literature
4

Similar Publications

Background: From the theoretical foundations of laser and energy-based applications for the skin to the development of advanced medical devices, the field of dermatologic surgery has undergone transformative changes.

Objective: To review the scientific and clinical advancement of laser and energy-based therapies within dermatologic surgery.

Materials And Methods: A literature search was conducted to identify important scientific advancements and landmark studies on light, laser, and energy-based devices within the field of dermatologic surgery.

View Article and Find Full Text PDF

The efficacy of immunotherapy in triple-negative breast cancer (TNBC) is significantly hindered by its low immunogenicity and immunosuppressive tumor microenvironment. Non-invasive photodynamic therapy (PDT) is increasingly recognized as a potential immunotherapeutic stimulant in the treatment of TNBC. However, photodynamic immunotherapy is constrained by tumor hypoxia and excessive inflammation suppression during the course of treatment.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.

View Article and Find Full Text PDF

Tuberculosis (TB) is one of the leading causes of death in the world, despite being a preventable and curable disease. Irrespective of tremendous advancements in early detection and treatment, this disease still has high mortality rates. This is due to the development of antibiotic resistance, which significantly reduced the efficacy of antibiotics, rendering them useless against this bacterial infection.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by inflammation and ulceration of the digestive tract.

Methods: Photodynamic therapy (PDT) with a novel photosensitizer LD was used to treat UC rat models to explore the therapeutic effect and mechanism of LD-PDT on UC. 16S ribosomal RNA was used to detect the composition of Gut microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!