Although the gut microbiome benefits the host in several ways, how anthropogenic forces impact the gut microbiome of mammals is not yet completely known. Recent studies have noted reduced gut microbiome diversity in captive mammals due to changes in diet and living environment. However, no studies have been carried out to understand how the gut microbiome of wild mammals responds to domestication. We analyzed the gut microbiome of wild and captive gaur and domestic mithun (domestic form of gaur) to understand whether the gut microbiome exhibits sequential changes from wild to captivity and after domestication. Both captive and domestic populations were characterized by reduced microbial diversity and abundance as compared to their wild counterparts. Notably, two beneficial bacterial families, and , which are known to play vital roles in herbivores' digestion, exhibited lower abundance in captive and domestic populations. Consequently, the predicted bacterial functional pathways especially related to metabolism and immune system showed lower abundance in captive and domestic populations compared to wild population. Therefore, we suggest that domestication can impact the gut microbiome more severely than captivity, which might lead to adverse effects on host health and fitness. However, further investigations are required across a wide range of domesticates in order to understand the general trend of microbiome shifts in domestic animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051944PMC
http://dx.doi.org/10.3389/fmicb.2020.00133DOI Listing

Publication Analysis

Top Keywords

gut microbiome
32
captive domestic
12
domestic populations
12
microbiome
9
gut
8
gaur domestic
8
domestic mithun
8
impact gut
8
understand gut
8
microbiome wild
8

Similar Publications

The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host.

View Article and Find Full Text PDF

Objectives: Rheumatoid arthritis (RA) is a chronic, destructive autoimmune disorder predominantly targeting the joints, with gut microbiota dysbiosis being intricately associated with its progression. The aim of the present study was to develop of effective early diagnostic methods for early RA based on gut microbiota.

Methods: A cohort comprising 262 RA patients and 475 healthy controls (HCs) was recruited.

View Article and Find Full Text PDF

The gut microbiome is a complex system that directly interacts with and influences many systems in the body. This delicate balance of microbiota plays an important role in health and disease and is highly influenced by lifestyle factors and the surrounding environment. As further research emerges, understanding the full potential of the gut microbiome and the impact of using nutraceuticals to positively influence its function may open the door to greater therapeutic outcomes in the treatment and prevention of disease.

View Article and Find Full Text PDF

Microbiome analysis has become a crucial tool for basic and translational research due to its potential for translation into clinical practice. However, there is ongoing controversy regarding the comparability of different bioinformatic analysis platforms and a lack of recognized standards, which might have an impact on the translational potential of results. This study investigates how the performance of different microbiome analysis platforms impacts the final results of mucosal microbiome signatures.

View Article and Find Full Text PDF

Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!