Introduction: Lin-11, Isl-1 and Mec-3 domains (LIM) homeobox genes are among the most important sub-families of homeobox genes. These genes are thought to play an important role in cancer. In this study, the protein expression of these genes was examined in urothelial carcinoma of the bladder. The expression pattern of Islet-1 (ISL1) and LIM homeobox 5 (LHX5) across different cancer stages and grades, as well as the association between the protein expression of these genes and patient demographics and clinicopathological features, were examined.
Methods: A total of 100 formalin-fixed paraffin-embedded urothelial carcinoma tissues were selected from the Department of Pathology, Hospital Kuala Lumpur and the protein expression of ISL1 and LHX5 was determined using immunohistochemistry.
Results: Positive expression of ISL1 and LHX5 was detected in 94% and 98% of the samples, respectively. There were no distinct LHX5 expression patterns associated with different cancer stages, but the proportion of high-expressing tumours was higher in high-grade tumours. In addition, there was a significant association between the expression of LHX5 and tumour grade. The proportion of tumours expressing high levels of ISL1 was found to be highest in later stage tumours.
Conclusion: The high percentage of tumours expressing both these genes suggests that ISL1 and LHX5 play an important role in bladder tumourigenesis across multiple stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053544 | PMC |
http://dx.doi.org/10.21315/mjms2020.27.1.4 | DOI Listing |
Front Neurosci
July 2020
Division of Biology, Kansas State University, Manhattan, KS, United States.
In mammals and other tetrapods, a multinuclear forebrain structure, called the amygdala, forms the neuroregulatory core essential for emotion, cognition, and social behavior. Currently, higher circuits of affective behavior in anamniote non-tetrapod vertebrates ("fishes") are poorly understood, preventing a comprehensive understanding of amygdala evolution. Through molecular characterization and evolutionary-developmental considerations, we delineated the complex amygdala ground plan of zebrafish, whose everted telencephalon has made comparisons to the evaginated forebrains of tetrapods challenging.
View Article and Find Full Text PDFMalays J Med Sci
February 2020
Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.
Introduction: Lin-11, Isl-1 and Mec-3 domains (LIM) homeobox genes are among the most important sub-families of homeobox genes. These genes are thought to play an important role in cancer. In this study, the protein expression of these genes was examined in urothelial carcinoma of the bladder.
View Article and Find Full Text PDFFront Neuroanat
February 2020
Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.
Analyses of genoarchitecture recently stimulated substantial revisions of anatomical models for the developing hypothalamus in mammalian and other vertebrate systems. The prosomeric model proposes the hypothalamus to be derived from the secondary prosencephalon, and to consist of alar and basal regions. The basal hypothalamus can further be subdivided into tuberal and mamillary regions, each with distinct subregions.
View Article and Find Full Text PDFDev Neurobiol
March 2008
Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain.
Extensive tangential cell migrations have been described in the developing mammalian, avian, and reptilian forebrain, and they are viewed as a powerful developmental mechanism to increase neuronal complexity in a given brain structure. Here, we report for the first time anatomical and cell tracking evidence for the presence of important migratory processes in the developing forebrain of the anamniote Xenopus laevis. Combining developmental gene expression patterns (Pax6, Nkx2.
View Article and Find Full Text PDFMol Endocrinol
September 2006
Physiologie de l'Axe Gonadotrope, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7079, Physiologie et Physiopathologie, Université Pierre et Marie Curie-Paris6, 4 place Jussieu, 75252 Paris cedex 05, France.
The GnRH receptor (GnRH-R) plays a central role in mammalian reproductive function throughout adulthood. It also appears as an early marker gene of the presumptive gonadotrope lineage in developing pituitary. Here, using transient transfections combined with DNA/protein interaction assays, we have delineated cis-acting elements within the rat GnRH-R gene promoter that represent targets for the LIM-homeodomain (LIM-HD) proteins, Isl-1 and Lhx3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!