Purpose: The emergence of isoniazid-resistant tuberculosis (HR-TB) is a global public health problem, causing treatment failure and high mortality rates. This study aimed to determine the minimal inhibitory concentration (MIC) of isoniazid and detect the gene mutation in HR-TB and any association between the level of isoniazid resistance and gene mutation.

Methods: We collected 74 clinical HR-TB isolates from two tertiary-care centers in Thailand. MICs were established using broth macrodilution. A line probe assay (LPA) was used to detect gene mutations that confer resistance to isoniazid, rifampicin, aminoglycosides, and fluoroquinolones.

Results: Sixty-one (82.4%) isolates were monoresistant to isoniazid and 44 (72.1%) were highly resistant to isoniazid. From the clinical isolates, the range of isoniazid MICs was 0.4-16 μg/mL. The S315T gene mutation was the prominent mutation in both isoniazid-monoresistant TB (70.5%) and multidrug-resistant TB (72.7%) isolates. The positive predictive value (PPV) of was 100% in detecting high levels of isoniazid resistance. The PPV of the mutation was 93.8% in detecting low levels of isoniazid resistance. Five isolates (6.8%) exhibited low-level phenotypic resistance, whereas an LPA failed to detect an isoniazid gene mutation. Our study found one HR-TB isolate with a fluoroquinolone-resistant gene mutation.

Conclusion: Most HR-TB isolates had high isoniazid-resistance levels associated with the gene mutation. High-dose isoniazid should be used with caution in patients with HR-TB. Early detection of drug resistance by genotypic assay can help determine an appropriate regimen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047971PMC
http://dx.doi.org/10.2147/IDR.S242261DOI Listing

Publication Analysis

Top Keywords

isoniazid resistance
16
gene mutation
16
isoniazid
11
resistance isolates
8
detect gene
8
hr-tb isolates
8
levels isoniazid
8
resistance
7
isolates
7
gene
7

Similar Publications

Background: Tuberculosis (TB) among women and infants during the perinatal period is not rare, particularly in countries with a high TB burden. And the risk would increase significantly following in vitro fertilization-embryo transfer (IVFET). Worse still, TB in this stage is apt to develop into severe forms in women and neonates, such as disseminated TB or tuberculous meningitis (TBM).

View Article and Find Full Text PDF

Background: All-oral regimens, including bedaquiline, are now standard in shorter treatment regimens (STRs) for multidrug-resistant tuberculosis (MDR-TB). Resistance or intolerance to drugs in STR often necessitates a switch to longer treatment regimens (LTRs). This study aims to identify the factors associated with this transition in MDR-TB patients.

View Article and Find Full Text PDF

This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS).

View Article and Find Full Text PDF

Tuberculosis (TB) remains a significant global health challenge, exacerbated by the emergence of drug-resistant strains of Mycobacterium tuberculosis (M. tb). The complex biology of M.

View Article and Find Full Text PDF

Membrane interaction studies of isoniazid derivatives active against drug-resistant tuberculosis.

Eur J Pharm Sci

December 2024

Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Campo Grande 1749-016, Portugal. Electronic address:

Tuberculosis is one of the leading causes of mortality worldwide due to the growth of multi-drug resistant strains unsusceptible to currently available therapies. Four compounds, isoniazid (INH) and three derivatives, N'-decanoylisonicotinohydrazide (INHC10), N'-(E)-(4-phenoxybenzylidene)isonicotinohydrazide (N34) and N'-(4-phenoxybenzyl)isonicotinohydrazide (N34red), were studied. Owing to their advantageous in vitro selectivity index against the primary mutation responsible for drug resistance in Mycobacterium tuberculosis (Mtb), as well as their suitable lipophilicity and interaction with human serum albumin, INHC10 and N34 were deemed promising antitubercular compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!