In order to ascertain the regulatory mechanism of fruit development in Fortune, the complementary DNA (cDNA) sequence of the () orthologous gene was identified by Rapid Amplification of cDNA Ends technology and the corresponding gene was named . The expression pattern of was determined by quantitative reverse transcription-polymerase chain reaction and wild-type Col-0 plants were transformed with the gene using and the floral-dip method. Expression analyses indicated that was highly expressed in flowers, silicles and seeds. Compared to wild-type plants, transgenic lines bolted earlier. Detailed phenotypic observations showed that the size of the rosette and cauline leaves in transgenic lines was reduced and the cauline leaves of the transgenic lines were incurved and displayed a funnel-like shape. During the reproductive growth stage, transgenic plants produced shortened sepals and the flower buds were not encapsulated completely. Moreover, the petals of the transgenic lines were converted into stamineous tissues, accompanied by exposed stamens, short malformed siliques and wrinkled valves, indicating a severe decline in fertility. These experimental conclusions are valuable as a reference for the breeding of medicinal plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036382 | PMC |
http://dx.doi.org/10.1007/s12298-019-00745-6 | DOI Listing |
PLoS Genet
January 2025
Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
The ability to manipulate gene activity and control transgene expression is essential to study gene function. While several genetic tools for modifying genes or controlling expression separately are available for Caenorhabditis elegans, there are no genetic approaches to generate mutations that simultaneously disrupt gene function and provide genetic access to the cells expressing the disrupted gene. To achieve this, we developed a versatile gene trap strategy based on cGAL, a GAL4-UAS bipartite expression system for C.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.
View Article and Find Full Text PDFPlanta
January 2025
Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Phytoglobin1 promotes Arabidopsis somatic embryogenesis through the mediation of ethylene and the ERFVII HRE2. Generation of somatic embryos in Arabidopsis (Arabidopsis thaliana) is a two-step process, encompassing an induction phase where embryogenic tissue (ET) is formed followed by a developmental phase encouraging the growth of the embryos. Using previously characterized transgenic lines dysregulating the class 1 Phytoglobin (Pgb1) we show that suppression of Pgb1 decreases somatic embryogenesis (SE).
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China; State Key Laboratory of High-Efficiency Production of Wheat-Mazie Doubel Cropping, Zhengzhou 450046, China. Electronic address:
Monogalactosyldiacylglycerol (MGDG), as the primary lipid component of thylakoid membranes, has a significant part in plant growth and stress response. The current study employed two transgenic wheat lines (MG1516 and MG1314) overexpressing the MGDG synthase gene (TaMGD) and wild-type cv "JW1" to explore the function of TaMGD in response to high temperature stress during the anthesis stage of wheat. Under high-temperature stress, the overexpressed wheat lines exhibited higher grain weight, increased antioxidant enzyme activity, and lower HO and malondialdehyde contents in leaves.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Circular RNAs (circRNAs), a type of head-to-tail closed RNA molecules, have been implicated in various aspects of plant development and stress responses through transcriptome sequencing; however, the precise functional roles of circRNAs in plants remain poorly understood. In this study, we identified a highly expressed circular RNA, circZmMED16, derived from exon 8 of the mediator complex subunit 16 (ZmMED16) across different maize (Zea mays L.) inbred lines using circRNA-seq analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!