A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatiotemporal Variations in Dissolved Elemental Mercury in the River-Dominated and Monsoon-Influenced East China Sea: Drivers, Budgets, and Implications. | LitMetric

Distinct spatiotemporal distributions of sea surface dissolved elemental mercury (DEM) and its air-sea exchange flux were observed in the river-dominated and monsoon-influenced East China Sea (ECS). Spatially, DEM concentrations were higher in the nearshore Changjiang diluted water (90 ± 20 to 260 ± 40 fM) than in the offshore Kuroshio water (60 ± 10 to 160 ± 40 fM) and correlated with salinity and total Hg concentrations, suggesting that the total Hg discharged from the Changjiang river is a controlling factor. In summer, monsoon-driven coastal upwelling formed a transient nearshore water mass with very elevated DEM concentrations (290 ± 20 to 320 ± 70 fM). Seasonally, DEM concentrations in all water masses were the highest in summer (120 ± 30 to 320 ± 70 fM). Estimated rate coefficients for DEM production varied seasonally and strongly correlated with sea surface temperature (SST). Hg evasion fluxes also peaked in summer (670 ± 380 pmol m day), while in winter, DEM was close to equilibrium with gaseous elemental mercury in the atmosphere. Based on the air-sea Hg fluxes for all four seasons from this study and regional atmospheric deposition fluxes from others, we conclude that the ECS is a net sink of Hg annually, but it is a source of Hg to the atmosphere in summer. Moreover, the contribution of the ECS to Hg evasion may increase as a result of flood-associated high Changjiang discharge and rising SST.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b06092DOI Listing

Publication Analysis

Top Keywords

elemental mercury
12
dem concentrations
12
dissolved elemental
8
river-dominated monsoon-influenced
8
monsoon-influenced east
8
east china
8
china sea
8
sea surface
8
dem
6
spatiotemporal variations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!