Background: Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet.

Methods: The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]).

Results: ALDEF cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF /CD34 populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF /CD34 cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF /CD34 cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro.

Conclusions: This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432589PMC
http://dx.doi.org/10.1002/jcsm.12557DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
muscular dystrophy
12
cell populations
12
aldef /cd34
12
muscle
9
aldehyde dehydrogenases
8
healthy aging
8
aging duchenne
8
duchenne muscular
8
aldh activity
8

Similar Publications

Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.

View Article and Find Full Text PDF

Optimized methods for scRNA-seq and snRNA-seq of skeletal muscle stored in nucleic acid stabilizing preservative.

Commun Biol

January 2025

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.

View Article and Find Full Text PDF

Age but not vitamin D is related to sarcopenia in vitamin D sufficient male elderly in rural China.

Sci Rep

January 2025

Department of Endocrinology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.

This study aimed to identify the correlation of serum 25(OH)D level with sarcopenia and its components in Chinese elderly aged 65 years and above from rural areas. A total of 368 Chinese elderly aged 65 years and above in rural areas were enrolled. Indicators of muscle mass and strength, including the appendicular skeletal muscle mass (ASM), skeletal muscle index (SMI) and hand grip strength (HGS) were measured.

View Article and Find Full Text PDF

Profiling of pathogenic variants in Japanese patients with sarcoglycanopathy.

Orphanet J Rare Dis

January 2025

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.

Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.

View Article and Find Full Text PDF

Association between daily sesame consumption and the risk of sarcopenia in elderly adults: the TCLSIH cohort study.

J Nutr

January 2025

School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. Electronic address:

Background: Sarcopenia is an age-related, progressive, and systemic skeletal muscle disorder that can lead to numerous adverse outcomes. Animal studies have shown that sesame can enhance skeletal muscle blood flow and improve physical performance. However, no studies have yet explored the association between sesame consumption and the incidence of sarcopenia in the general population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!