Bacterial cyclic dinucleotides (CDNs) play important roles in regulating biofilm formation, motility and virulence. In eukaryotic cells, theses bacterial CDNs are recognized as pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response. We report the photophysical analyses of a novel group of enzymatically synthesized emissive CDN analogues comprised of two families of isomorphic ribonucleotides. The highly favorable photophysical features of the CDN analogues, when compared to their non-emissive natural counterparts, are used to monitor in real time the dinucleotide cyclase-mediated synthesis and phosphodiesterase (PDE)-mediated hydrolysis of homodimeric and mixed CDNs, providing effective means to probe the activities of two classes of bacterial enzymes and insight into their biomolecular recognition and catalytic features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220823 | PMC |
http://dx.doi.org/10.1002/chem.202001194 | DOI Listing |
ChemMedChem
December 2024
China Pharmaceutical University, State Key Laboratory of Natural Medicines, CHINA.
The activation of the STING-mediated signaling pathway leads to the secretion of type I interferon (IFN) and the activation of tumor-specific T cells. STING, a pattern recognition receptor located on the endoplasmic reticulum membrane of immune cells, binds with endogenous cyclic dinucleotides. STING undergoes phosphorylation, triggering the STING-TBK1-IRF3 pathway and NF-κB pathway, resulting in the release of IFN-β and other pro-inflammatory cytokines, ultimately enhancing the activation of tumor-specific T cells.
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA.
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India.
In , RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability.
View Article and Find Full Text PDFCell Rep
December 2024
Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China. Electronic address:
cGAS-like receptor (cGLR)-stimulator of interferon genes (STING) recently emerged as an important pathway controlling viral infections in invertebrates. However, its exact contribution at the organismal level remains uncharacterized. Here, we use STING::GFP knockin reporter Drosophila flies to document activation of the pathway in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biochemistry, Brandeis University, Waltham, MA 02453.
The bacterial pathogen forms multicellular communities known as biofilms in which cells are held together by an extracellular matrix principally composed of repurposed cytoplasmic proteins and extracellular DNA. These biofilms assemble during infections or under laboratory conditions by growth on medium containing glucose, but the intracellular signal for biofilm formation and its downstream targets were unknown. Here, we present evidence that biofilm formation is triggered by a drop in the levels of the second messenger cyclic-di-AMP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!