Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064512 | PMC |
http://dx.doi.org/10.1038/s41598-020-61353-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!