Edible nanoparticles (ENPs) are nano-sized vesicles derived from edible plants. These ENPs are loaded with plant derived microRNAs, protein, lipids and phytochemicals. Recently, ginger derived ENPs was shown to prevent inflammatory bowel diseases and colon cancer, in vivo, highlighting their therapeutic potential. Conventionally, differential centrifugation with an ultra-centrifugation step is employed to purify these ENPs which imposes limitation on the cost-effectiveness of their purification. Herein, we developed polyethylene glycol-6000 (PEG6000) based ginger ENP purification (PEG-ENPs) method, which eliminates the need for expensive ultracentrifugation. Using different PEG6000 concentrations, we could recover between 60% to 90% of ENPs compared to ultracentrifugation method. PEG-ENPs exhibit near identical size and zeta potential similar to ultra-ENPs. The biochemical composition of PEG-ENPs, such as proteins, lipids, small RNAs and bioactive content is comparable to that of ultra-ENPs. In addition, similar to ultra-ENPs, PEG-ENPs are efficiently taken up by the murine macrophages and protects cells from hydrogen peroxide induced oxidative stress. Since PEG has been approved as food additive, the PEG method described here will provide a cost-effective alternative to purify ENPs, which can be directly used as a dietary supplement in therapeutic formulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064537 | PMC |
http://dx.doi.org/10.1038/s41598-020-61358-8 | DOI Listing |
Chem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Department of Pathobiology, Faculty of Veterinary Medicine Bu-Ali Sina University Hamedan Iran.
In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
September 2024
Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
November 2024
Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350 Pakistan.
The current study is the first comprehensive report on the expression of fibrinogen binding protein (FIB) antigen in the genetically engineered switchgrass. Mammary tissue inflammation is one of the major infectious diseases caused by in the dairy animals. The aim of the present study is to develop an efficient and economical bioengineered immunogen for controlling mastitis in developing countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!