Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During hemolysis, free heme released from damaged RBCs impairs adjacent cells. As a response, heme induces its metabolic degradation via heme oxygenase-1 (HO-1), activated by NF-E2-related factor 2 (NRF2), the master stress response transcription factor. Heme is well considered a signaling molecule, but how heme does activate NRF2 is not well understood. K562, human pro-erythroid cells responding to hemin (ferric chloride heme), were employed to uncover the major role of Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 stress response signaling, embedded in hemin-induced cytotoxicity (HIC), at ≥50 μM. The intracellular pools of hemin were found to determine the progression from the reversible cell growth inhibition to non-apoptotic cell death. Hemin-induced accumulation of both reactive oxygen species (ROS) and ubiquitinated proteins provoked disturbed cellular proteostasis. Immediate accumulation and nuclear translocation of NRF2 were recorded as defensive adaptation. The NRF2-driven genes encoding glutamate-cysteine ligase (GCLC) and cystine/glutamate antiporter (xCT) were substantially activated. Hemin orchestrated a defensive pathway involving the management of cellular non-protein thiols, via an increase in GSH levels and secretion of cysteine. Mechanistically, hemin stabilized NRF2 protein levels selectively by inhibiting the KEAP1-driven ubiquitination of NRF2, while allowing KEAP1 ubiquitination. High-molecular-weight ubiquitinated KEAP1 variants formed in hemin-treated cells degraded in proteasomes, while a portion of them translocated into the nucleus. The KEAP1/NRF2 system can be revealed as a basic homeostatic mechanism, activated in cells encountering free heme, both in healthy and diseased state. Its activation provides a multi-target cytoprotective platform to develop agents preventing heme toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2020.113900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!