Zinc has gained notable attention in the development of potent anti-diabetic agents, due to its role in insulin storage and secretion, as well as its reported insulin mimetic properties. Consequently, zinc(II) has been complexed with numerous organic ligands as an adjuvant to develop anti-diabetic agents with improved and/or broader scope of pharmacological properties. This review focuses on the research advances thus far to identify the major scientific gaps and prospects. Peer-reviewed published data on the anti-diabetic effects of zinc(II) complexes were sourced from different scientific search engines, including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify potent anti-diabetic zinc(II) complexes. The complexes were subcategorized according to their precursor ligands. A critical analysis of the outcomes from published studies shows promising leads, with Zn(II) complexes having a "tri-facet" mode of exerting pharmacological effects. However, the promising leads have been flawed by some major scientific gaps. While zinc(II) complexes of synthetic ligands with little or no anti-diabetic pharmacological history remain the most studied (about 72 %), their toxicity profile was not reported, which raises safety concerns for clinical relevance. The zinc(II) complexes of plant polyphenols; natural ligands, such as maltol and hinokitiol; and supplements, such as ascorbic acid (a natural antioxidant), l-threonine and l-carnitine, showed promising insulin mimetic and glycemic control properties but remain understudied and lack clinical validation, in spite of their minimal safety concerns and health benefits. A paradigm shift toward probing (including clinical studies) supplements, plant polyphenol and natural ligands as anti-diabetic zinc(II) complex is, therefore, recommended. Also, promising anti-diabetic Zn(II) complexes of synthetic ligands should undergo critical toxicity evaluation to address possible safety concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2020.104744 | DOI Listing |
Eur J Med Chem
December 2024
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.
Two novel complexes, [Cu()Cl] and [Zn()Cl], were synthesized from 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine] (), and copper(II) and zinc(II) chloride, respectively. The structures of these complexes were confirmed using ESI-MS, IR and H NMR spectra. The results reveal mononuclear structures in which the central metal atoms are coordinated by two N atoms from the imidazole rings and two Cl ligands.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, South Korea.
To address the ongoing demand for high-performance energy storage devices, it is crucial to identify new electrode materials. Lithium-ion batteries (LIBs) store energy via the electrochemical redox process, so their electrode materials should have reversible redox properties for rechargeability. On that note, redox-active metal complexes are explored as innovative electrode materials for LIBs.
View Article and Find Full Text PDFJACS Au
December 2024
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!