The encapsulation of bioactive compounds is an emerging technique for finding new medicines since it provides protection against ambient degradation factors before reaching the target site. Nanotechnology provides new methods for encapsulating bioactive compounds and for drug carrier development. Nanocarriers satisfactorily impact the absorption, distribution, metabolism, and excretion rate when compared to conventional carriers. The nanocarrier material needs to be compatible and bind to the drug and be bio-resorbable. In this context, the physicochemical characterization of encapsulated bioactive compounds is fundamental to guarantee the quality, reproducibility, and safety of the final pharmaceutical product. In this review, we present the physicochemical techniques most used today by researchers to characterize bioactive compounds in nanocarriers and the main information provided by each technique, such as morphology, size, degree of crystallinity, long-term stability, the efficacy of drug encapsulation, and the amount released as a function of time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612826666200310144533 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFJ Med Chem
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS.
View Article and Find Full Text PDFNat Prod Rep
January 2025
Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy at Saarland University, PharmaScienceHub (PSH), 66123 Saarbrücken, Germany.
Covering 1948 up to October 2024Sorbicillinoids are a growing class of natural products (NPs) that stem from a variety of fungi including members of the orders and . This compound class is unique in its combination of structural complexity and pharmaceutically relevant biological activities. The majority of the sorbicillinoids, which are named after the common hexaketide precursor sorbicillin, exhibit anti-inflammatory, antimicrobial, cytotoxic, phytotoxic, and other selective enzyme inhibitory activities.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
DÖHLER Food, İstanbul, Turkey.
Unlabelled: In this study, the changes in the physicochemical properties, color stability, and amino acid composition of cemen paste (CP) produced by adjusting to different pH levels (3.0, 4.0, 5.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Food Science and Nutrition Department, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato, Campinas, SP 13083-862 Brazil.
The aim of this study was to assess the gamma-aminobutyric acid (GABA) production in plant-based fermented beverages with kefir cultures (milk and water kefir). Water-soluble extracts of peanut and Brazil nut were evaluated as non-dairy substrates for the development of new bioactive beverages. A total of 12 formulations were developed and evaluated for their chemical composition, physical chemical characterization, and microbiological counts (aerobic mesophilic bacteria, lactobacilli, lactococci and yeasts).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!