Graft copolymers of chitosan with cellulose ether have been obtained by the solid-state reactive mixing of chitin, sodium hydroxide and hydroxyethyl cellulose under shear deformation in a pilot twin-screw extruder. The structure and composition of the products were determined by elemental analysis and IR spectroscopy. The physicochemical properties of aqueous solutions of copolymers were studied as a function of the composition, and were correlated to the mechanical characteristics of the resulting films to assess the performance of new copolymers as coating materials, non-woven fibrous materials or emulsifiers for interface stabilization during the microparticle fabrication process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182875PMC
http://dx.doi.org/10.3390/polym12030611DOI Listing

Publication Analysis

Top Keywords

solid-state synthesis
4
synthesis water-soluble
4
water-soluble chitosan-g-hydroxyethyl
4
chitosan-g-hydroxyethyl cellulose
4
copolymers
4
cellulose copolymers
4
copolymers graft
4
graft copolymers
4
copolymers chitosan
4
chitosan cellulose
4

Similar Publications

A series of cyclometalated Au(III) complexes [Au(C^N^C)(C-L-P(O)Ph)] with C^N^C = 2,6-diphenylpyridine and alkynylphosphine oxide ligands (L = no linker, Au1; phenyl, Au2; biphenyl, Au3; naphthyl, Au4; anthracenyl, Au5) were synthesized and fully characterized by spectroscopic methods and single crystal XRD analysis. The complexes obtained exhibit triplet (Au1-Au3) and dual (Au4, Au5) emissions in solution, in the solid phase and in the PMMA film, whose characteristics depend on the linker's nature of the alkynylphosphine oxide ligand. The description of electronic transitions responsible for energy absorption and emission in Au(III) complexes was made on the basis of a detailed analysis of the results of DFT calculations and has shown to involve ILCT, LLCT and MLCT transitions of singlet and triplet nature.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Ultrahigh Selectivity HS Gas Sensor Based CsPbBr Perovskites via Pb-S Bonding Interaction.

ACS Sens

January 2025

State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.

High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.

View Article and Find Full Text PDF

Initial abiotic factors as key drivers in core microbe assembly: Regulatory effects on flavor profiles in light-flavor .

Food Chem X

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.

Instability in initial abiotic factors of open solid-state fermentation systems can significantly alter 's flavor profile, but the mechanisms governing microbial interactions and flavor formation remain unclear. This study comprehensively monitored changes in abiotic factors, microbial communities, and flavor profiles across two distinct fermentation processes in a distillery, which differed significantly in their management of initial abiotic factors. Our results revealed significant differences in abiotic factors between the two groups, including moisture, ethanol, acidity, glucose, and organic acid levels.

View Article and Find Full Text PDF

Boosting Amino Acid Synthesis with WO Sub-Nanoclusters.

Adv Mater

January 2025

College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China.

The conversion of nitrate-rich wastewater and biomass-derived blocks into high-value products using renewably generated electricity is a promising approach to modulate the artificial carbon and nitrogen cycle. Here, a new synthetic strategy of WO sub-nanoclusters is reported and supported on carbon materials as novel efficient electrocatalysts for nitrate reduction and its coupling with α-keto acids. In acidic solutions, the NH-NHOH selectivity can also optimized by adjusting the potential, with the total FE exceeding 80% over a wide potential range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!