Oxidative desulfurization of model oil over Ta-Beta zeolite synthesized via structural reconstruction.

J Hazard Mater

Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, China. Electronic address:

Published: July 2020

As to metallosilicate zeolites, ions with larger size such as Ta in the gels greatly retarded their crystallization during the hydrothermal synthesis, affording long-winded synthesis periods, up-limited framework-substituted metal contents, or even frustrated outcome. An efficient hydrothermal synthesis strategy for metallosilicate, in this case of Ta framework-substituted *BEA zeolite, via structural reconstruction was proposed to stride the gap. The Ta content in our developed Ta-Beta-Re-50 zeolite achieved up to 5.48 % (Si/Ta = 52), breaking through the limitation of Ta contents for conventional method (Si/Ta > 100). Additionally, this Ta-Beta-Re zeolite possessed nanosized crystals (20-40 nm) and short crystallization time (8 h), significantly improving space-time yields of practical zeolite production. Through spectroscopic study, it was confirmed that the existence of zeolite structural units intensively facilitated the formation of nucleation and crystal growth. This innovative Ta-Beta zeolite demonstrated high catalytic performances for oxidation desulfurization, far outperforming traditional fluoride-mediated Ta-Beta-F, which was ascribed to its excellent diffusion properties and incredible high isolated Ta contents. Additionally, the catalytic performance of Ta-Beta-Re could be regenerated after simple calcination and the deactivation may be caused by pore blocking of organics. This work provides a new method for rationally design and construction of metallosilicate materials with high activity for catalytic oxidation applications, which can bridge the conceptual and technical gap between periodic trends and zeolite material synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122458DOI Listing

Publication Analysis

Top Keywords

zeolite
8
ta-beta zeolite
8
structural reconstruction
8
hydrothermal synthesis
8
zeolite structural
8
oxidative desulfurization
4
desulfurization model
4
model oil
4
oil ta-beta
4
zeolite synthesized
4

Similar Publications

Convertible Hydrogel Injection Sequentially Regulates Diabetic Periodontitis.

ACS Biomater Sci Eng

January 2025

Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China.

Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect.

View Article and Find Full Text PDF

Structure-Reactivity Relationship of Zeolite-Confined Rh Catalysts for Hydroformylation of Linear α-Olefins.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.

View Article and Find Full Text PDF

Au nanoparticles anchored carbonized ZIF-8 for enabling real-time and noninvasive glucose monitoring in sweat.

Biosens Bioelectron

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China. Electronic address:

Wearable sensors can easily enable real-time and noninvasive glucose (Glu) monitoring, providing vital information for effectively preventing various complications caused by high glucose level. Here, a wearable sensor based on nanozyme-catalyzed cascade reactions is designed for Glu monitoring in sweat. Au nanoparticles (AuNPs) are anchored to the carbonated zeolitic imidazolate framework-8 (ZIF-8-C), endowing the sensor with Glu oxidase (GOx)-like and peroxidase (POD)-like activity.

View Article and Find Full Text PDF

Zeolites are a large family of minerals and the most studied is the naturally occurring clinoptilolite. They possess anti-inflammatory, antioxidant, and detoxifying properties which makes them valuable for medicinal use. Element analysis of zeolite's composition is necessary for its precise chemical characterization, and within this work development of a suspension method for the determination of manga nese, iron, and zinc by total reflection X-ray fluorescence spec-trometry (TXRF) was presented.

View Article and Find Full Text PDF

Modeling ethanol/water adsorption in all-silica zeolites using the real adsorbed solution theory.

J Chem Phys

January 2025

Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003-9303, USA.

A comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!