Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons.

Ecotoxicol Environ Saf

Department of Production Technology of Reservoir Fluids, Oil and Gas Institute - National Research Institute, 31-503, Krakow, ul. Lubicz 25 A, Poland.

Published: May 2020

Phytoremediation is a promising "green technique" used to purify contaminated soils. The performed phytoremediation experiments assisted by the fertilization process involving pots of F.arundinacea grown on soils with diverse concentrations and types of contaminations produced the following decreased percentages after 6 months: Pb (25.4-34.1%), Ni (18.7-23.8%), Cd (26.3-46.7%), TPH (49.4-60.1%). Primarily, TPH biodegradation was occurring as a result of basic bioremediation stimulated by adding optimal volumes of biogenic substances and corrections in the soil reaction, while phytoremediation improved this process by 17.4 - 23.1%. The highest drop in a range of 45.6 - 55.5% was recorded for the group of C-C hydrocarbons, with the lowest one for C-C, amounting to 9.1-17.4%. Translocation factor values were: TF<1 and ranged, respectively, for: Pb (0.46-0.53), Ni (0.29-0.33), and Cd (0.21-0.25), which indicate that heavy metals absorbed by Festuca arundinacea they mainly accumulated in the root of the tissue in descending order: Cd

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110409DOI Listing

Publication Analysis

Top Keywords

application festuca
4
festuca arundinacea
4
phytoremediation
4
arundinacea phytoremediation
4
phytoremediation soils
4
soils contaminated
4
contaminated petroleum
4
petroleum hydrocarbons
4
hydrocarbons phytoremediation
4
phytoremediation promising
4

Similar Publications

Preparation and Performance Study of Novel Foam Vegetation Concrete.

Materials (Basel)

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.

Vegetation concrete is one of the most widely used substrates in ecological slope protection, but its practical application often limits the growth and nutrient uptake of plant roots due to consolidation problems, which affects the effectiveness of slope protection. This paper proposed the use of a plant protein foaming agent as a porous modifier to create a porous, lightweight treatment for vegetation concrete. Physical performance tests, direct shear tests, plant growth tests, and scanning electron microscopy experiments were conducted to compare and analyze the physical, mechanical, microscopic characteristics, and phyto-capabilities of differently treated vegetation concrete.

View Article and Find Full Text PDF

Effects of Artificially Modified Microbial Communities on the Root Growth and Development of Tall Fescue in Nutrient-Poor Rubble Soil.

Plants (Basel)

November 2024

Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.

The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading.

View Article and Find Full Text PDF

Impact of graphene oxide disturbance on the structure and function of arbuscular mycorrhizal networks.

Ecotoxicol Environ Saf

December 2024

Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:

With the widespread application of graphene oxide (GO), its potential toxicity has received increasing attention. The extraradical mycelium of arbuscular mycorrhizal fungi (AMF) can extend from the roots of one plant to those of another, forming complex common mycorrhizal networks (CMNs) for the transfer of nutrients and infochemicals. However, the impact of GO on the structure and transfer function of CMNs remains unknown.

View Article and Find Full Text PDF

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has biological toxicity, persistence, long-range migration and bioaccumulation ability. However, there is currently little research on the phytotoxicity of DBDPE in plants. The perennial herbaceous plant tall fescue (Festuca elata Keng ex E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!