The emulsion stability depends on the physicochemical properties of the dispersed phase and their interaction with the continuous phase. Surface-active compounds (SAC) are added in emulsions to reduce the interfacial tension (IT) between these phases and keep the oil droplets stabilized. Moreover, small amounts of SAC can occupy intermolecular voids in the dried matrix, reducing the oxidation. However, the formulation must reflect a trade-off between protection and emulsion stabilization. Therefore, this work aimed to identify the minimum concentration of SAC (modified starch-MS, gelatin-GE, and whey protein isolate-WPI) ranging from 0.48 to 6 % (w/w) to form and stabilize droplets of an unsaturated triglyceride (fish oil-FO) or a volatile oil (orange essential oil-OEO). GE did not change the IT (6.7 mN/m) and stabilized the emulsions only through an increase of the viscosity (∼42 mPas for FO-emulsions and ∼97 mPas for OEO-emulsions), presenting high droplet size (∼10 μm) and low surface charge (∼1.5 mV). WPI reduced the IT to a limit value (4.5 mN/m at 1.2 % w/w for OEO and 5.3 mN/m at 2.4 % w/w for FO), whereas MS reduce constantly the IT with the increase of the concentration for both oils (∼4.2 mN/m at 6 % w/w). Both WPI and MS-emulsions presented similar droplet size (∼2.0 μm), but WPI presented higher surface charge of WPI-emulsions (-45 mV) than MS-emulsions (-30 mV). This study allowed to gain a consistent understanding of structure-property relationships on the use of SAC in emulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.110939DOI Listing

Publication Analysis

Top Keywords

sac emulsions
8
droplet size
8
surface charge
8
performance oil-in-water
4
emulsions
4
oil-in-water emulsions
4
emulsions stabilized
4
stabilized types
4
types surface-active
4
surface-active components
4

Similar Publications

This study aimed to prepare a combined self-nanoemulsifying and self-assembled cubic nanoparticles (SNE/SAC) lyophilized tablet eliciting biphasic release pattern escorted with enhanced bioavailability for drugs hampered with slow dissolution and poor absorption. The antimuscarinic Darifenacin hydrobromide (DRF) was selected as a model drug used to treat overactive bladder-associated nocturia. The DRF-SNE/SAC lyophilized tablet was prepared so that upon reconstitution a mixture of DRF-loaded cubic nanoparticles and nanoemulsion dispersion is obtained.

View Article and Find Full Text PDF

Nanotechnology offers promising avenues for enhancing drug delivery systems, particularly in HIV-1 treatment. This study investigates a nanoemulsified formulation combining epigallocatechin gallate (EGCG) with dolutegravir (DTG) for managing HIV-1 infection. The combinatorial interaction between EGCG and DTG was explored through cellular, enzymatic, and molecular studies.

View Article and Find Full Text PDF

An allergy to bites from (Diptera: Ceratopogonidae) occurs because of a hypersensitivity reaction caused by the inoculation of insect salivary antigens during the bite, resulting in immune-mediated dermatitis. To the best of our knowledge, no previous studies have focused on allergic dermatitis in donkeys in Brazil. Therefore, this study aimed to describe the epidemiological, clinicopathological, and therapeutic aspects of allergic dermatitis in donkeys and to identify the insects involved in its epidemiology.

View Article and Find Full Text PDF

Solid self-emulsifying casein carrier for the improvement on the oral bioavailability of simvastatin.

Int J Biol Macromol

May 2024

Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong, PR China. Electronic address:

Simvastatin (SV) is a statin drug that can effectively control cholesterol and prevent cardiovascular diseases. However, SV is water-insoluble, and poor oral bioavailability (<5 %). Solid self-emulsifying carrier system is more stable than liquid emulsions, facilitating to improve the solubility and bioavailability of poorly soluble drugs.

View Article and Find Full Text PDF

Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!