Plant growth promoting bacteria (PGPB) have been used to enhance crop productivity. The effect of native PGPB and arbuscular mycorrhizal (AM) fungi in combination on wheat yield, biofortification and soil enzymatic activity is a relatively unexplored area. Twenty seven bacterial isolates from three different soils were characterized for their plant growth promoting traits. A total of three native and five non-native bacteria were used with and without arbuscular mycorrhizal (AM) fungi in an open greenhouse pot experiment with two wheat varieties to evaluate their effect on wheat yield, nutrient uptake, and soil health parameters. Wheat plants subjected to native PGPB (CP4) (Bacillus subtilis) and AM fungi treatment gave the best results with reference to macronutrient (nitrogen and phosphorus), micronutrient (iron and zinc) content in wheat grains and yield-related parameters, including thousand grain weight, number of grains per spike and total tillers per plant in both wheat cultivars. Treatment with CP4 and CP4 plus AM fungi enhanced total chlorophyll in wheat leaves indicating higher photosynthetic activity. Significant improvement in soil health-related parameters, including soil organic matter and dehydrogenase activity, was observed. Significant correlation among grain yield-related parameters, nutrient enhancement, and soil health parameters was observed in PGPB and AM fungi treated plants, especially HD-3086. These results provide a roadmap for utilizing native PGPB and AM fungi for enhancing wheat production in Punjab state of India and exploring their utility in other parts of the country with different soil and environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.02.039 | DOI Listing |
PLoS One
January 2025
Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.
The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.
View Article and Find Full Text PDFMycorrhiza
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.
View Article and Find Full Text PDFFront Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China.
The imbalanced soil nutrient status caused by the long-term monoculture of flue-cured tobacco are a concern. The tobacco-maize relay intercropping, widely used in Yunnan, may improve soil nutrients by enhancing the soil microbial community, but this remains unexplored. This study employed high-throughput sequencing technology to examine soil microbial diversity under tobacco monoculture and tobacco-maize relay intercropping, using the varieties Hongda and K326, respectively.
View Article and Find Full Text PDFEcology
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!