Strong plasmon-exciton coupling could occur in hybrid metal-dye/semiconductor nanostructures, where the fast energy exchange between plasmons and excitons leads to two new eigenmodes of the system, known as Rabi splitting. In experiments, strongly coupled nanosystems are difficult to obtain because they require some strict conditions, such as low plasmonic damping, small plasmon mode volume, and good spectral overlap. This work demonstrates strongly coupled metal-semiconductor nanostructures can be constructed using colloidal assembly. Specifically, sandwiched Au-quantum dot-Au nanostructures were created through the assembly of Au nanoparticles and colloidal quantum dots (QDs). The sizes of the QDs and the assembly conditions were varied to control the mode volume of the plasmonic cavity formed between the two Au nanoparticles. With a decreased gap size, Rabi splitting was observed in both dark-field scattering and fluorescence spectra of single Au-QD-Au nanostructures. Theoretical simulations revealed that the strong coupling occurred between the excitons and the octupolar plasmon modes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00110 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.
Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:
Development of efficient and stable bifunctional transition metal phosphide catalysts is critical for advancing hydrogen production technologies. Herein, RuCo co-doped NiP (RuCoNiP) was designed and synthesized by one-step electrodeposition for Ni electronic structure modulation, and evolved to RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) heterointerfaces by self-assembled reconstruction during HER and OER processes, respectively. RuCoNiP@α-Ni(OH) enhances HER activity (305.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!