Brain Shuttle Neprilysin reduces central Amyloid-β levels.

PLoS One

Neuroscience Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.

Published: July 2020

Reducing Amyloid β (Aβ) in the brain is of fundamental importance for advancing the therapeutics for Alzheimer`s disease. The endogenous metallopeptidase neprilysin (NEP) has been identified as one of the key Aβ-degrading enzymes. Delivery of NEP to the brain by utilizing the Brain Shuttle (BS) transport system offers a promising approach for clearing central Aβ. We fused the extracellular catalytic domain of NEP to an active or inactive BS module. The two BS-NEP constructs were used to investigate the pharmacokinetic/pharmacodynamics relationships in the blood and the cerebrospinal fluid (CSF) in dose-response and multiple dosing. As previously shown, NEP was highly effective at degrading Aβ in blood but not in the CSF compartment after systemic administration. In contrast, the NEP with an active BS module led to a significant CSF exposure of BS-NEP, followed by substantial Aβ reduction in CSF and brain parenchyma. Our data show that a BS module against the transferrin receptor facilitates the transport of an Aβ degrading enzyme across the blood-brain barriers to efficiently reduce Aβ levels in both CSF and brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064168PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229850PLOS

Publication Analysis

Top Keywords

brain shuttle
8
nep active
8
csf brain
8
brain
6
6
nep
5
csf
5
shuttle neprilysin
4
neprilysin reduces
4
reduces central
4

Similar Publications

Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice.

Dev Cell

January 2025

State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China. Electronic address:

Lactate has emerged as a central metabolic fuel and an important signaling molecule. Its availability participates in various brain functions. Although lactate homeostasis is vital for adult hippocampal neurogenesis and cognition, it is still unknown how shuttles lactate across the plasma membrane of neural stem cells (NSCs) to control their activity and neurogenic potential.

View Article and Find Full Text PDF

Introduction: Cerebral ischemic strokes cause brain damage, primarily through inflammatory factors. One of the regions most affected by middle cerebral artery occlusion (MCAO) is the hippocampus, specifically the CA1 area, which is highly susceptible to ischemia. Previous studies have demonstrated the anti-inflammatory properties of quercetin.

View Article and Find Full Text PDF

The brain's substantial metabolic requirements, consuming a substantial fraction of the body's total energy despite its relatively small mass, necessitate sophisticated metabolic mechanisms for efficient energy distribution and utilization. The astrocyte-neuron lactate shuttle (ANLS) hypothesis has emerged as a fundamental framework explaining the metabolic cooperation between astrocytes and neurons, whereby astrocyte-derived lactate serves as a crucial energy substrate for neurons. This review synthesizes current understanding of brain energy metabolism, focusing on the dual roles of lactate as both an energy substrate and a signaling molecule.

View Article and Find Full Text PDF

Lactate: Beyond a mere fuel in the epileptic brain.

Neuropharmacology

December 2024

Department of Pharmacology, Medical School of Southeast University, Nanjing, China. Electronic address:

Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression.

View Article and Find Full Text PDF

Transferrin Receptor (TfR)-mediated transcytosis across the blood-brain barrier (BBB) enables the uptake of bispecific therapeutic antibodies into the brain. At therapeutically relevant concentrations, bivalent binding to TfR appears to reduce the transcytosis efficiency by receptor crosslinking. In this study, we aimed to improve BBB transcytosis of symmetric antibodies through minimizing their ability to cause TfR crosslinking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!