Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The conformer generator ETKDG is a stochastic search method that utilizes distance geometry together with knowledge derived from experimental crystal structures. It has been shown to generate good conformers for acyclic, flexible molecules. This work builds on ETKDG to improve conformer generation of molecules containing small or large aliphatic (i.e., non-aromatic) rings. For one, we devise additional torsional-angle potentials to describe small aliphatic rings and adapt the previously developed potentials for acyclic bonds to facilitate the sampling of macrocycles. However, due to the larger number of degrees of freedom of macrocycles, the conformational space to sample is much broader than for small molecules, creating a challenge for conformer generators. We therefore introduce different heuristics to restrict the search space of macrocycles and bias the sampling toward more experimentally relevant structures. Specifically, we show the usage of elliptical geometry and customizable Coulombic interactions as heuristics. The performance of the improved ETKDG is demonstrated on test sets of diverse macrocycles and cyclic peptides. The code developed here will be incorporated into the 2020.03 release of the open-source cheminformatics library RDKit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.0c00025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!